分析 (Ⅰ)根據(jù)函數(shù)f(x)的最小值正周期求出ω的值,再根據(jù)正弦函數(shù)的單調(diào)性求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)根據(jù)正弦函數(shù)的圖象與性質(zhì),求出f(x)的最大值以及取最大值時(shí)x的取值集合.
解答 解:(Ⅰ)函數(shù)f(x)=$\sqrt{2}$sin(2ωx+$\frac{π}{4}$)+2的最小值正周期是
T=$\frac{2π}{2ω}=\frac{π}{2}$,
解得ω=2; …(2分)
令$-\frac{π}{2}+2kπ≤4x+\frac{π}{4}≤\frac{π}{2}+2kπ,k∈Z$,
解得-$\frac{3π}{16}$+$\frac{kπ}{2}$≤x≤$\frac{π}{16}$+$\frac{kπ}{2}$,k∈Z; …(5分)
所以函數(shù)f(x)的單調(diào)遞增區(qū)間為[-$\frac{3π}{16}$+$\frac{kπ}{2}$,$\frac{π}{16}$+$\frac{kπ}{2}$],k∈Z; …(6分)
(Ⅱ)由(Ⅰ)知,$f(x)=\sqrt{2}sin({4x+\frac{π}{4}})+2$,
當(dāng)$4x+\frac{π}{4}=\frac{π}{2}+2kπ$,即$x=\frac{π}{16}+\frac{kπ}{2}({k∈Z})$時(shí),
$sin({4x+\frac{π}{4}})$取得最大值1,…(10分)
所以f(x)的最大值是$2+\sqrt{2}$,
此時(shí)x∈$\left\{{x|x=\frac{π}{16}+\frac{kπ}{2},k∈Z}\right\}$. …(12分)
點(diǎn)評(píng) 本題考查了三角函數(shù)的圖象與性質(zhì)的應(yīng)用問題,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 12 | B. | 24 | C. | 64 | D. | 81 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
使用智能手機(jī) | 不使用智能手機(jī) | 總計(jì) | |
學(xué)習(xí)成績(jī)優(yōu)秀 | 4 | 8 | 12 |
學(xué)習(xí)成績(jī)不優(yōu)秀 | 16 | 2 | 18 |
總計(jì) | 20 | 10 | 30 |
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
A. | 有99.5%的把握認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)有影響 | |
B. | 有99.5%的把握認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)無影響 | |
C. | 在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)有影響 | |
D. | 在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)無影響 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -8 | B. | -4 | C. | -3 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({3-\frac{3}{2}ln2,+∞})$ | B. | $[{3-\frac{3}{2}ln2,+∞})$ | C. | [3-3ln2,+∞) | D. | (3-3ln2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com