6.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若(a+b+c)(b+c-a)=3bc,△ABC的面積為$\frac{\sqrt{3}}{2}$,且b=1,則a=$\sqrt{3}$.

分析 由已知整理可得:b2+c2-a2=bc,利用余弦定理可求cosA,結(jié)合范圍A∈(0,π),可得A,利用三角形面積公式可求c,進(jìn)而利用余弦定理即可求a的值.

解答 解:在△ABC中,∵(a+b+c)(b+c-a)=3bc,
∴整理可得:b2+c2-a2=bc,
∴cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{bc}{2bc}$=$\frac{1}{2}$,
∴由A∈(0,π),可得:A=$\frac{π}{3}$,
∵b=1,△ABC的面積為$\frac{\sqrt{3}}{2}$=$\frac{1}{2}$bcsinA=$\frac{1}{2}×1×c×\frac{\sqrt{3}}{2}$,
∴解得:c=2,
∴由余弦定理可得:a=$\sqrt{^{2}+{c}^{2}-2bccosA}$=$\sqrt{{1}^{2}+{2}^{2}-2×1×2×\frac{1}{2}}$=$\sqrt{3}$.
故答案為:$\sqrt{3}$.

點(diǎn)評(píng) 本題主要考查了余弦定理,三角形面積公式在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=|x-2|+1,g(x)=kx,若方程f(x)=g(x)有且只有一個(gè)實(shí)根,則實(shí)數(shù)k的取值集合為{k|k<-1,或k≥1,或k=$\frac{1}{2}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.用數(shù)學(xué)歸納法證明“當(dāng)n為正奇數(shù)時(shí),xn+yn能被x+y整除”,第二步歸納假設(shè)應(yīng)該寫成(  )
A.假設(shè)當(dāng)n=k(k∈N*)時(shí),xk+yk能被x+y整除
B.假設(shè)當(dāng)n=2k(k∈N*)時(shí),xk+yk能被x+y整除
C.假設(shè)當(dāng)n=2k+1(k∈N*)時(shí),xk+yk能被x+y整除
D.假設(shè)當(dāng)n=2k-1(k∈N*)時(shí),x2k-1+y2k-1能被x+y整除

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)k∈R,函數(shù)f(x)=lnx-kx.
(1)若k=2,求曲線y=f(x)在P(1,-2)處的切線方程;
(2)若f(x)無零點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,且Sn=2an-n+1(n∈N*),bn=an+1.
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)求數(shù)列{nbn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知MOD函數(shù)是一個(gè)求余函數(shù),其格式為MOD(n,m),其結(jié)果為n除以m的余數(shù),例如MOD(8,3)=2.右面是一個(gè)算法的程序框圖,當(dāng)輸入n的值為12時(shí),則輸出的結(jié)果為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在四棱錐P-ABCD中,PC⊥平面ABCD,底面ABCD是平行四邊形,AB=BC=2a,AC=2$\sqrt{3}$a,E的PA的中點(diǎn).
(Ⅰ)求證:平面BED⊥平面PAC;
(Ⅱ)求點(diǎn)E到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{{\sqrt{2}}}{2}$,它的一個(gè)焦點(diǎn)在拋物線y2=-4x的準(zhǔn)線上.點(diǎn)E為橢圓C的右焦點(diǎn).
(1)求橢圓C的方程;
(2)已知直線l:y=kx+t與橢圓C交于M,N兩點(diǎn).
(i)若t≠0,直線EM與EN的斜率分別為k1、k2,滿足k1+k2=0,求證:直線l過定點(diǎn),并求出該定點(diǎn)的坐標(biāo);
(ii)在x軸上是否存在點(diǎn)G(m,0),使得|MG|=|NG|,且|MN|=2?若存在,求出實(shí)數(shù)m的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知直線a,b,平面α,滿足a⊥α,且b∥α,有下列四個(gè)命題:
①對(duì)任意直線c?α,有c⊥a;
②存在直線c?α,使c⊥b且c⊥a;
③對(duì)滿足a?β的任意平面β,有β⊥α;
④存在平面β⊥α,使b⊥β.
其中正確的命題有①②③④(填寫所有正確命題的編號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案