14.如圖所示,某貨場有兩堆集裝箱,一堆2個,一堆3個,現(xiàn)需要全部裝運(yùn),每次只能從其中一堆取最上面的一個集裝箱,則在裝運(yùn)的過程中不同取法的種數(shù)是10(用數(shù)字作答).

分析 根據(jù)題意,假設(shè)左邊的積木從上至下依次為1、2、3,右邊的積木從上至下依次為4、5,分析可得必須先取1或4,據(jù)此分2種情況討論,分別列舉2種情況下的取法數(shù)目,由分類計數(shù)原理計算可得答案.

解答 解:根據(jù)題意,假設(shè)左邊的積木從上至下依次為1、2、3,右邊的積木從上至下依次為4、5,
分2種情況討論:
若先取1,有12345、12453、12435、14235、14253、14523,共6種取法;
若先取4,有45123、41523、41253、41235,共4種取法;
則一共有6+4=10中不同的取法;
故答案為:10.

點(diǎn)評 本題考查計數(shù)原理的應(yīng)用,關(guān)鍵是依據(jù)題意,正確進(jìn)行分類討論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)向量$\overrightarrow{a}$=(2,0),$\overrightarrow$=(1,1),則下列結(jié)論中正確的是( 。
A.|$\overrightarrow{a}$|=|$\overrightarrow$|B.$\overrightarrow{a}$•$\overrightarrow$=$\frac{1}{2}$C.$\overrightarrow{a}$⊥$\overrightarrow$D.($\overrightarrow{a}$-$\overrightarrow$)⊥$\overrightarrow$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.中國有個名句“運(yùn)籌帷幄之中,決勝千里之外.”其中的“籌”原意是指《孫子算經(jīng)》中記載的算籌,古代是用算籌來進(jìn)行計算,算籌是將幾寸長的小竹棍擺在平面上進(jìn)行運(yùn)算,算籌的擺放形式有縱橫兩種形式(如圖所示),表示一個多位數(shù)時,像阿拉伯計數(shù)一樣,把各個數(shù)位的數(shù)碼從左到右排列,但各位數(shù)碼的籌式需要縱橫相間,個位,百位,萬位數(shù)用縱式表示,十位,千位,十萬位用橫式表示,以此類推.例如6613用算籌表示就是,則9117用算籌可表示為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.對任意的正整數(shù)n,以及任意n個互不相同的正整數(shù)a1,a2,…,an,若不等式${({\frac{1}{a_1}})^λ}+{({\frac{1}{a_2}})^λ}+…+{({\frac{1}{a_n}})^λ}<2$恒成立,求整數(shù)λ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在直三棱錐A1B1C1-ABC,AB⊥AC,AB=AC=2,AA1=4,點(diǎn)D是BC的中點(diǎn).
(1)求異面直線A1B與C1D所成角的余弦值;
(2)求平面ADC1與平面A1BA所成的二面角(是指不超過90°的角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,已知四邊形ABCD和BCGE均為直角梯形,AD∥BC,CE∥BG且∠BCD=∠BCE=$\frac{π}{2}$,平面ABCD⊥平面BCGE,BC=CD=CE=2AD=2BG=2.
(1)求證:AG∥平面BDE;
(2)求三棱錐G-BDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)的定義域?yàn)镽,且f(2)=2,又函數(shù)f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示,若兩個正數(shù)a、b滿足f(2a+b)<2,則$\frac{b+2}{a+2}$的取值范圍是( 。
A.($\frac{2}{3}$,2)B.(-∞,$\frac{2}{3}$)∪(2,+∞)C.(2,+∞)D.(-∞,$\frac{2}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=|x+1|.
(1)求不等式|2x+1|-f(x)<1的解集;
(2)若關(guān)于x的不等式f(x)≥|a-x|+2的解集為非空集合,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知ai>0(i=1,2,3,…,n),觀察下列不等式:$\frac{{{a_1}+{a_2}}}{2}≥\sqrt{{a_1}{a_2}}$;$\frac{{{a_1}+{a_2}+{a_3}}}{3}≥\root{3}{{{a_1}{a_2}{a_3}}}$;$\frac{{{a_1}+{a_2}+{a_3}+{a_4}}}{4}≥\root{4}{{{a_1}{a_2}{a_3}{a_4}}}$;

照此規(guī)律,當(dāng)n∈N*(n≥2)時,$\frac{{{a_1}+{a_2}+…+{a_n}}}{n}≥$$\root{n}{{{a_1}{a_2}…{a_n}}}$.

查看答案和解析>>

同步練習(xí)冊答案