分析 (Ⅰ)由正弦定理和二倍角的正弦函數(shù)公式化簡已知等式可得sinBsinA=2sinAsinBcosB,進(jìn)而可求cosB=$\frac{1}{2}$,結(jié)合B是三角形內(nèi)角,可求B的值.
(Ⅱ)由已知利用余弦定理可求b2=(a+c)2-3ac,又b=$\sqrt{10}$,a+c=ac,即可解得ac的值,進(jìn)而利用三角形面積公式即可計(jì)算得解.
解答 解:(Ⅰ)由正弦定理和bsinA=asin2B得sinBsinA=sinAsin2B,
所以sinBsinA=2sinAsinBcosB,
所以cosB=$\frac{1}{2}$.
又B是三角形內(nèi)角,
所以B=$\frac{π}{3}$;
(Ⅱ)∵B=$\frac{π}{3}$,
∴b2=a2+c2-2accosB=a2+c2-ac=(a+c)2-3ac,
又b=$\sqrt{10}$,a+c=ac,
∴(ac)2-3ac=10,(ac-5)(ac+2)=0,
∴ac=5或ac=-2(舍去)
∴S△ABC=$\frac{1}{2}$acsinB=$\frac{5\sqrt{3}}{4}$.
點(diǎn)評 本題主要考查了正弦定理,二倍角的正弦函數(shù)公式,余弦定理,三角形面積公式在解三角形中的綜合應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 81種 | B. | 64種 | C. | 36種 | D. | 18種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m≥$\frac{5}{2}$ | B. | m>$\frac{5}{2}$ | C. | m≤$\frac{5}{2}$ | D. | m<$\frac{5}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 40m | B. | 20m | C. | 305m | D. | (20$\sqrt{6}$-40)m |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (e,+∞) | B. | (0,e) | C. | [1,e) | D. | (0,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com