12.點(diǎn)P從(1,0)出發(fā),沿單位圓按逆時針方向運(yùn)動$\frac{2π}{3}$弧長到達(dá)Q點(diǎn),則Q的坐標(biāo)為( 。
A.$(-\frac{1}{2},\frac{{\sqrt{3}}}{2})$B.$(-\frac{{\sqrt{3}}}{2},-\frac{1}{2})$C.$(-\frac{1}{2},-\frac{{\sqrt{3}}}{2})$D.$(-\frac{{\sqrt{3}}}{2},\frac{1}{2})$

分析 由題意推出∠QOx角的大小,然后求出Q點(diǎn)的坐標(biāo).

解答 解:點(diǎn)P從(0,1)出發(fā),沿單位圓逆時針方向運(yùn)動$\frac{2π}{3}$弧長到達(dá)Q點(diǎn),所以∠QOx=$\frac{2π}{3}$,
所以Q(cos$\frac{2π}{3}$,sin$\frac{2π}{3}$),所以Q$(-\frac{1}{2},\frac{{\sqrt{3}}}{2})$.
故選:A

點(diǎn)評 本題通過角的終邊的旋轉(zhuǎn),求出角的大小是解題的關(guān)鍵,考查計算能力,注意旋轉(zhuǎn)方向.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.由四棱柱ABCD-A1B1C1D1截去三棱錐C1-B1CD1后得到的幾何體如圖所示,四邊形ABCD為正方形,O為AC與BD 的交點(diǎn),E為AD的中點(diǎn),A1E⊥平面ABCD,
(Ⅰ)證明:A1O∥平面B1CD1;
(Ⅱ)設(shè)M是OD的中點(diǎn),證明:平面A1EM⊥平面B1CD1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若x,y滿足$\left\{\begin{array}{l}{x≤3}\\{x+y≥2}\\{y≤x}\end{array}\right.$,則x+2y的最大值為( 。
A.1B.3C.5D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在△ABC中,∠A=60°,c=$\frac{3}{7}$a.
(1)求sinC的值;
(2)若a=7,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若M={1,2,3,6},N={2,3,4,7,9},則M∩N=( 。
A.{2,3}B.{1,4}C.{1,2,3,4,6,7,9}D.{2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=pe-x+x+1(p∈R).
(Ⅰ)當(dāng)實(shí)數(shù)p=e時,求曲線y=f(x)在點(diǎn)x=1處的切線方程;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)p=1時,若直線y=mx+1與曲線y=f(x)沒有公共點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列說法中正確的是( 。
①如果α是第一象限的角,則角-α是第四象限的角
②函數(shù)y=sinx在[-$\frac{π}{6}$,$\frac{2π}{3}$]上的值域是[-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$]
③已知角α的終邊上的點(diǎn)P的坐標(biāo)為(3,-4),則sinα=-$\frac{4}{5}$
④已知α為第二象限的角,化簡tanα$\sqrt{1-{{sin}^2}α}$=sinα.
A.①②B.①③C.③④D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的體積(單位:cm2)是( 。
A.$\frac{π}{2}$+1B.$\frac{π}{2}$+3C.$\frac{3π}{2}$+1D.$\frac{3π}{2}$+3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知a>0,b>0,a3+b3=2.證明:
(1)(a+b)(a5+b5)≥4;
(2)a+b≤2.

查看答案和解析>>

同步練習(xí)冊答案