分析 (1)求得等比數(shù)列的公比q,由等比數(shù)列的通項(xiàng)公式計(jì)算即可得到;
(2)求出等差數(shù)列{bn}的公差d,運(yùn)用等差數(shù)列的通項(xiàng)公式,可得bn,求得an•bn=n•($\frac{1}{2}$)n,再由數(shù)列的求和方法:錯(cuò)位相減法,結(jié)合等比數(shù)列的求和公式,化簡(jiǎn)整理即可得到所求和.
解答 解:(1)等比數(shù)列{an}滿足:${a_1}=\frac{1}{2},2{a_3}={a_2}$,
可得公比q=$\frac{{a}_{3}}{{a}_{2}}$=$\frac{1}{2}$,
數(shù)列{an}的通項(xiàng)公式為an=a1qn-1=($\frac{1}{2}$)n;
(2)等差數(shù)列{bn}的前n項(xiàng)和為Sn,滿足b1=1,S3=b2+4,
設(shè)公差為d,則3+3d=5+d,解得d=1,
則bn=b1+(n-1)d=n,
an•bn=n•($\frac{1}{2}$)n,
前n項(xiàng)和Tn=1•($\frac{1}{2}$)+2•($\frac{1}{2}$)2+…+n•($\frac{1}{2}$)n,
$\frac{1}{2}$Tn=1•($\frac{1}{2}$)2+2•($\frac{1}{2}$)3+…+n•($\frac{1}{2}$)n+1,
兩式相減可得,$\frac{1}{2}$Tn=$\frac{1}{2}$+($\frac{1}{2}$)2+($\frac{1}{2}$)3+…+($\frac{1}{2}$)n-n•($\frac{1}{2}$)n+1
=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$-n•($\frac{1}{2}$)n+1,
化簡(jiǎn)可得Tn=2-(n+2)•($\frac{1}{2}$)n.
點(diǎn)評(píng) 本題考查等比數(shù)列和等差數(shù)列的通項(xiàng)公式和求和公式的運(yùn)用,考查數(shù)列的求和方法:錯(cuò)位相減法,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{5}{8}$ | B. | $\frac{13}{16}$ | C. | $\frac{3}{8}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 有最大值 | B. | 是減函數(shù) | C. | 是增函數(shù) | D. | 有最小值 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | cos(2x+y) | B. | cosy | C. | sin(2x+y) | D. | siny |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{5}$ | B. | 3 | C. | $\sqrt{10}$ | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com