15.從一副撲克牌中取出1張A,2張K,2張Q放入一盒子中,然后從這5張牌中隨機取出兩張,則這兩張牌大小不同的概率為$\frac{4}{5}$.

分析 從這5張牌中隨機取出兩張,共有10種方法,兩張牌大小相同有2種方法,利用互斥事件概率公式,即可求出這兩張牌大小不同的概率.

解答 解:從這5張牌中隨機取出兩張,共有10種方法,兩張牌大小相同有2種方法,
∴這兩張牌大小不同的概率為1-$\frac{2}{10}$=$\frac{4}{5}$,
故答案為$\frac{4}{5}$.

點評 本題考查概率的計算,考查學(xué)生的計算能力,確定基本事件的情況是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在△ABC中,如果有性質(zhì)acosA=bcosB,這個三角形的形狀是( 。
A.等邊三角形B.等腰三角形
C.等腰三角形或直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)$f(x)=\frac{1}{3}{x^3}-b{x^2}+2x+1,\;\;({x∈R})$.
(1)若$b=\frac{3}{2}$,求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)若x=-1是函數(shù)y=f(x)的一個極值點,試判斷此時函數(shù)y=f(x)的零點個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}的前n項和為${S_n}={2^n}+a$(a為常數(shù),n∈N*).
(1)求a1,a2,a3;
(2)若數(shù)列{an}為等比數(shù)列,求常數(shù)a的值及an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=$\frac{1}{2}$x4-2x3+3m(x∈R),若f(x)+6≥0恒成立,則實數(shù)m的取值范圍是( 。
A.m≥$\frac{5}{2}$B.m>$\frac{5}{2}$C.m≤$\frac{5}{2}$D.m<$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.從某小區(qū)隨機抽取40個家庭,收集了這40個家庭去年的月均用水量(單位:噸)的數(shù)據(jù),整理得到頻數(shù)分布表和頻率分布直方圖.
分組頻數(shù)
[2,4)2
[4,6)10
[6,8)16
[8,10)8
[10,12]4
合計40
(1)求頻率分布直方圖中a,b的值;
(2)從該小區(qū)隨機選取一個家庭,試估計這個家庭去年的月均用水量不低于6噸的概率;
(3)在這40個家庭中,用分層抽樣的方法從月均用水量不低于6噸的家庭里抽取一個容量為7的樣本,將該樣本看成一個總體,從中任意選取2個家庭,求其中恰有一個家庭的月均用水量不低于8噸的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.要測量底部不能到達(dá)的電視塔AB的高度,在C點測得塔頂A的仰角是45°,在D點測得塔頂A的仰角是30°,并測得水平面上的∠BCD=120°,CD=40m,則電視塔的高度為( 。
A.40mB.20mC.305mD.(20$\sqrt{6}$-40)m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知{an}是等比數(shù)列,數(shù)列滿足a1=3,a4=24,數(shù)列{bn}滿足b1=1,b4=-8,且{an+bn} 是等差數(shù)列.
(I )求數(shù)列{an}和{bn}的通項公式;
(II)求數(shù)列{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合A={y|y=$\sqrt{x-2}$},B={x|y=$\sqrt{x-2}$},則A∩CRB=( 。
A.{x|x≥0}B.{x|0≤x<2}C.{x|x<2}D.{x|x≥2}

查看答案和解析>>

同步練習(xí)冊答案