13.已知z1=1-3i,z2=3+i,其中i是虛數(shù)單位,則$\frac{{\overline{z_1}}}{z_2}$的虛部為(  )
A.-1B.$\frac{4}{5}$C.-iD.$\frac{4}{5}i$

分析 利用復數(shù)的運算法則、虛部的定義即可得出.

解答 解:$\frac{{\overline{z_1}}}{z_2}$=$\frac{1+3i}{3+i}$=$\frac{(1+3i)(3-i)}{(3+i)(3-i)}$=$\frac{6+8i}{10}$的虛部為$\frac{4}{5}$.
故選:B.

點評 本題考查了復數(shù)的運算法則、虛部的定義義,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

5.設實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x+y≥0}\\{x-y≤0}\\{x+3y≤3}\end{array}\right.$,則$\frac{x+y}{\sqrt{{x}^{2}+{y}^{2}}}$的取值范圍是[0,2].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.設a=1111111(2),b=2001(4),c=242(7),則a,b,c的大小關系是(  )
A.a<b<cB.a<c<bC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=2$\sqrt{2}$,BC=4$\sqrt{2}$,PA=2,點M在PD上.
(Ⅰ)求證:AB⊥PC;
(Ⅱ)若BM與平面ABCD所成角的正切值為$\frac{{\sqrt{26}}}{26}$,求四棱錐M-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.設命題p:A={x|(4x-3)2≤1};命題q:B={x|a≤x≤a+1},若¬p是¬q的必要不充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知正整數(shù)m的3次冪有如下分解規(guī)律:13=1;23=3+5;33=7+9+11;        43=13+15+17+19;…若m3(m∈N+)的分解中最小的數(shù)為91,則m的值為10.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知對任意實數(shù)x.都有f(-x)=-f(x),g(-x)=g(x),且x>0時,f′(x)>0,g′(-x)>0,則x<0時有(  )
A.f′(x)>0,g′(-x)>0B.f′(x)>0,g′(-x)<0C.f′(x)<0,g′(-x)>0D.f′(x)<0,g′(-x)<0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知復數(shù)$\frac{1+2i}{1+i}$=a+bi,則a+b=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x}-1,x≤0}\\{f(x-1),x>0}\end{array}\right.$若方程f(x)-a=0有唯一解,則實數(shù)a的取值范圍是(1,+∞).

查看答案和解析>>

同步練習冊答案