分析 (Ⅰ)設(shè)E為BC的中點(diǎn),連結(jié)AE,求解三角形可得AB⊥AC,又PA⊥平面ABCD,得AB⊥PA,再由線面垂直的判定可得AB⊥面PAC,故有AB⊥PC;
(Ⅱ)結(jié)合(Ⅰ)可得∠BAD=135°,過(guò)M作MG⊥AD于G,設(shè)AG=x,則GD=$2\sqrt{2}-x$,有MG=$\frac{4-\sqrt{2}x}{2}$.在△ABG中,由余弦定理可得BG,由BM與平面ABCD所成角的正切值為$\frac{\sqrt{26}}{26}$,得M為PD的中點(diǎn),再由棱錐體積公式求得四棱錐M-ABCD的體積.
解答 解:(Ⅰ)證明:如圖,設(shè)E為BC的中點(diǎn),連結(jié)AE,
則AD=EC,又AD∥EC,∴四邊形AECD為平行四邊形,
故AE⊥BC,又AE=BE=EC=$2\sqrt{2}$,
∴∠ABC=∠ACB=45°,故AB⊥AC,
又∵PA⊥平面ABCD,∴AB⊥PA,
∵PA∩AC=A,∴AB⊥平面PAC,故有AB⊥PC;
(Ⅱ)由(1)知AB⊥AC,可得∠BAD=135°,
過(guò)M作MG⊥AD于G,設(shè)AG=x,則GD=$2\sqrt{2}-x$,∴MG=$\frac{4-\sqrt{2}x}{2}$.
在△ABG中,由余弦定理可得:BG=$\sqrt{{4}^{2}+{x}^{2}+4\sqrt{2}x}$,
由BM與平面ABCD所成角的正切值為$\frac{\sqrt{26}}{26}$,得$\frac{\frac{4-\sqrt{2}x}{2}}{\sqrt{16+{x}^{2}+4\sqrt{2}x}}=\frac{\sqrt{26}}{26}$,解得x=$\sqrt{2}$,
∴MG=1,即M為PD的中點(diǎn).
此時(shí)四棱錐M-ABCD的體積為$\frac{1}{3}×\frac{1}{2}(2\sqrt{2}+4\sqrt{2})×2\sqrt{2}×1$=4.
點(diǎn)評(píng) 本題考查直線與平面垂直的判定和性質(zhì),考查空間想象能力和思維能力,考查多面體體積的求法,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -6 | B. | 3 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $(1,\sqrt{10})$ | B. | $(\sqrt{10},+∞)$ | C. | $({1,\sqrt{10}}]$ | D. | $[{\sqrt{10}}\right.,+∞)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1 | B. | $\frac{4}{5}$ | C. | -i | D. | $\frac{4}{5}i$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com