14.設(shè){an}是公差不為0的等差數(shù)列,a1=2且a1,a3,a6成等比數(shù)列,則{an}的前10項和S10=$\frac{85}{2}$.

分析 設(shè){an}的公差為d,且d≠0,由等比中項的性質(zhì)、等差數(shù)列的通項公式列出方程,求出d的值,由等差數(shù)列的前n項和公式求出{an}的前10項和S10

解答 解:設(shè)等差數(shù)列{an}的公差為d,且d≠0,
∵a1=2且a1,a3,a6成等比數(shù)列,
∴(a32=a1a6,則(2+2d)2=2(2+5d),
解得d=$\frac{1}{2}$或d=0(舍去),
∴{an}的前10項和S10=10×2+$\frac{10×9}{2}×\frac{1}{2}$=$\frac{85}{2}$,
故答案為:$\frac{85}{2}$.

點評 本題考查等差數(shù)列的通項公式、前n項和公式,以及等比中項的性質(zhì),考查方程思想.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)集合M={x|x2≥x},N={x|log${\;}_{\frac{1}{2}}$(x+1)>0},則有(  )
A.N⊆MB.M⊆∁RNC.M∩N=∅D.M∪N=R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知在△ABC中∠A、∠B均為銳角,sinA=$\frac{\sqrt{5}}{5}$,sinB=$\frac{\sqrt{10}}{10}$,
(1)求cos(A+B)
(2)求∠C的度數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.(x-1)7的展開式中x2的系數(shù)為-21.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=x-alnx(a∈R).
(1)若曲線y=f(x)在x=1處的切線與直線x-2y-7=0垂直,求f(x)的單調(diào)區(qū)間;
(2)求證:f(x)≥1恒成立的充要條件是a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知數(shù)列{an}的通項公式為${a_n}={({\frac{3}{4}})^{n-1}}[{{{({\frac{3}{4}})}^{n-1}}-1}]$,則關(guān)于an的最大項、最小項敘述正確的是( 。
A.最大項為a1、最小項為a3B.最大項為a1、最小項不存在
C.最大項不存在、最小項為a3D.最大項為a1、最小項為a4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)正三棱錐A-BCD(底面是正三角形,頂點在底面的射影為底面中心)的所有頂點都在球O的球面上,BC=2,E,F(xiàn)分別是AB,BC的中點,EF⊥DE,則球O的表面積為( 。
A.$\frac{3π}{2}$B.C.D.12π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.三棱錐V-ABC的三條棱VA,VB,VC兩兩垂直,三個側(cè)面與底面所成的二面角大小分別為α,β,γ.求證:$cosαcosβcosγ({\frac{1}{{{{cos}^2}α}}+\frac{1}{{{{cos}^2}β}}+\frac{1}{{{{cos}^2}γ}}})≥\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知焦距為2$\sqrt{2}$的橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右頂點為A,直線y=$\frac{4}{3}$與橢圓C交于P、Q兩點(P在Q的左邊),Q在x軸上的射影為B,且四邊形ABPQ是平行四邊形.
(1)求橢圓C的方程;
(2)斜率為k的直線l與橢圓C交于兩個不同的點M,N.
(i)若直線l過原點且與坐標軸不重合,E是直線3x+3y-2=0上一點,且△EMN是以E為直角頂點的等腰直角三角形,求k的值
(ii)若M是橢圓的左頂點,D是直線MN上一點,且DA⊥AM,點G是x軸上異于點M的點,且以DN為直徑的圓恒過直線AN和DG的交點,求證:點G是定點.

查看答案和解析>>

同步練習(xí)冊答案