15.已知函數(shù)f(x)=|2x-1|
(Ⅰ)若不等式f(x+$\frac{1}{2}$)≤2m+1(m>0)的解集為[-$\frac{3}{2}$,$\frac{3}{2}$],求實(shí)數(shù)m的值;
(Ⅱ)若不等式f(x)≤|y|+|a-y|+|2x|,對(duì)任意的實(shí)數(shù)x,y∈R都成立,求正實(shí)數(shù)a的最小值.

分析 (Ⅰ)若不等式f(x+$\frac{1}{2}$)≤2m+1(m>0)的解集為[-$\frac{3}{2}$,$\frac{3}{2}$],不等式|2x|≤2m+1(m>0)的解集為[-$\frac{3}{2}$,$\frac{3}{2}$],解不等式,即可求實(shí)數(shù)m的值;
(Ⅱ)若不等式f(x)≤|y|+|a-y|+|2x|,對(duì)任意的實(shí)數(shù)x,y∈R都成立,則|2x-1|-|2x|≤|y|+|a-y|,利用(|2x-1|-|2x|)max=1,(|y|+|a-y|)min=a,即可得出結(jié)論.

解答 解:(Ⅰ)若不等式f(x+$\frac{1}{2}$)≤2m+1(m>0)的解集為[-$\frac{3}{2}$,$\frac{3}{2}$],
∴不等式|2x|≤2m+1(m>0)的解集為[-$\frac{3}{2}$,$\frac{3}{2}$],
由|2x|≤2m+1,可得-m-$\frac{1}{2}$≤x≤m+$\frac{1}{2}$,
∴m+$\frac{1}{2}$=$\frac{3}{2}$,∴m=1;
(Ⅱ)若不等式f(x)≤|y|+|a-y|+|2x|,對(duì)任意的實(shí)數(shù)x,y∈R都成立,則|2x-1|-|2x|≤|y|+|a-y|,
∵(|2x-1|-|2x|)max=1,(|y|+|a-y|)min=a,∴a≥1,
∴正實(shí)數(shù)a的最小值為1.

點(diǎn)評(píng) 本題考查不等式的解法,考查絕對(duì)值不等式的運(yùn)用,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖所示,正三角形ABC所在平面與梯形BCDE所在平面垂直,BE∥CD,BE=2CD=4,BE⊥BC,F(xiàn)為棱AB的中點(diǎn).
(1)求證:CF⊥平面ABE;
(2)若直線DA與平面ABC所成的角為30°,求三棱錐D-BEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.?dāng)?shù)列{an}滿足:a1=1,a2=2,an+2=$\frac{{a}_{n}+{a}_{n+1}}{2}$(n∈N*).設(shè)bn=an+1-an,
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)求最小正整數(shù)N的值,使n>N時(shí),|an-$\frac{5}{3}$|<$\frac{2}{9n}$恒成立;
(3)數(shù)列{cn}滿足${c_n}=\frac{3}{2}|{{a_n}-\frac{5}{3}}|$,cn的前n項(xiàng)和為Tn,是否存在正整數(shù)m、n,使得$\frac{{T}_{n+1}-m}{{T}_{n}-m}$>cm+2成立?若存在,求出所有符合條件的有序?qū)崝?shù)對(duì)(m,n);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.在平面直角坐標(biāo)系中,直線y=$\sqrt{2}$x與圓O:x2+y2=1交于A、B兩點(diǎn).α、β的始邊是x軸的非負(fù)半軸,終邊分別在射線OA和OB上,則tan(α+β)的值為( 。
A.-2$\sqrt{2}$B.-$\sqrt{2}$C.0D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,已知PD垂直于以AB為直徑的圓O所在的平面,點(diǎn)D在線段AB上,點(diǎn)C為圓O上一點(diǎn),且BD=PD=3,AC=2AD=2.
(Ⅰ)求證:CD⊥平面PAB
(Ⅱ)求點(diǎn)A到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{1}{2}$,右焦點(diǎn)為F2,點(diǎn)M在圓x2+y2=b2上,且M在第一象限,過(guò)M作圓x2+y2=b2的切線交橢圓于P,Q兩點(diǎn).若△PF2Q的周長(zhǎng)為4,則橢圓C的方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.集合$M=\left\{{\left.x\right|x=\frac{n}{2}+1,n∈Z}\right\}$,$N=\left\{{\left.y\right|y=m+\frac{1}{2},m∈Z}\right\}$,則兩集合M,N的關(guān)系為( 。
A.M∩N=∅B.M=NC.M?ND.N?M

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.在棱長(zhǎng)為6的正方體ABCD-A1B1C1D1中,P、Q是直線DD1上的兩個(gè)動(dòng)點(diǎn).如果PQ=2,那么三棱錐P-BCQ的體積等于12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.關(guān)于函數(shù)f(x)=2cos2$\frac{x}{2}$+$\sqrt{3}$sinx(x∈[0,π])下列結(jié)論正確的是( 。
A.有最大值3,最小值-1B.有最大值2,最小值-2
C.有最大值3,最小值0D.有最大值2,最小值0

查看答案和解析>>

同步練習(xí)冊(cè)答案