分析 (Ⅰ)若不等式f(x+$\frac{1}{2}$)≤2m+1(m>0)的解集為[-$\frac{3}{2}$,$\frac{3}{2}$],不等式|2x|≤2m+1(m>0)的解集為[-$\frac{3}{2}$,$\frac{3}{2}$],解不等式,即可求實(shí)數(shù)m的值;
(Ⅱ)若不等式f(x)≤|y|+|a-y|+|2x|,對(duì)任意的實(shí)數(shù)x,y∈R都成立,則|2x-1|-|2x|≤|y|+|a-y|,利用(|2x-1|-|2x|)max=1,(|y|+|a-y|)min=a,即可得出結(jié)論.
解答 解:(Ⅰ)若不等式f(x+$\frac{1}{2}$)≤2m+1(m>0)的解集為[-$\frac{3}{2}$,$\frac{3}{2}$],
∴不等式|2x|≤2m+1(m>0)的解集為[-$\frac{3}{2}$,$\frac{3}{2}$],
由|2x|≤2m+1,可得-m-$\frac{1}{2}$≤x≤m+$\frac{1}{2}$,
∴m+$\frac{1}{2}$=$\frac{3}{2}$,∴m=1;
(Ⅱ)若不等式f(x)≤|y|+|a-y|+|2x|,對(duì)任意的實(shí)數(shù)x,y∈R都成立,則|2x-1|-|2x|≤|y|+|a-y|,
∵(|2x-1|-|2x|)max=1,(|y|+|a-y|)min=a,∴a≥1,
∴正實(shí)數(shù)a的最小值為1.
點(diǎn)評(píng) 本題考查不等式的解法,考查絕對(duì)值不等式的運(yùn)用,考查學(xué)生分析解決問題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -2$\sqrt{2}$ | B. | -$\sqrt{2}$ | C. | 0 | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | M∩N=∅ | B. | M=N | C. | M?N | D. | N?M |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 有最大值3,最小值-1 | B. | 有最大值2,最小值-2 | ||
C. | 有最大值3,最小值0 | D. | 有最大值2,最小值0 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com