15.不等式$\sqrt{x+3}<2$的解是[-3,1).

分析 原不等式轉(zhuǎn)化為$\left\{\begin{array}{l}{x+3≥0}\\{x+3<4}\end{array}\right.$,解得即可.

解答 解:由$\sqrt{x+3}<2$可得$\left\{\begin{array}{l}{x+3≥0}\\{x+3<4}\end{array}\right.$,解得-3≤x<1
故不等式的解集為[-3,1),
故答案為:[-3,1)

點(diǎn)評(píng) 本題考查了含有根式的不等式的解法,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.F1、F2分別為雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn),O為坐標(biāo)原點(diǎn),若雙曲線左支上存在一點(diǎn)P,使($\overrightarrow{OP}$+$\overrightarrow{O{F}_{1}}$)•($\overrightarrow{{F}_{2}P}$-$\overrightarrow{{F}_{2}{F}_{1}}$)=0,且|$\overrightarrow{P{F}_{2}}$|=3|$\overrightarrow{P{F}_{1}}$|,則此雙曲線的離心率為$\frac{\sqrt{10}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)函數(shù)f(x)=sin(2x+$\frac{π}{4}$)(x∈[0,$\frac{9π}{8}$]),若方程f(x)=a恰好有三個(gè)根,分別為x1,x2,x3(x1<x2<x3),則x1+x2+x3的取值范圍是(  )
A.[$\frac{9π}{8}$,$\frac{5π}{4}$)B.[$\frac{5π}{4}$,$\frac{11π}{8}$)C.[$\frac{3π}{2}$,$\frac{13π}{8}$)D.[$\frac{7π}{4}$,$\frac{15π}{8}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在等差數(shù)列中,a1=25,d=-4,前n項(xiàng)的和為Sn,則Sn最大值為364.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.求函數(shù)y=-x2+4x-1,x∈[-1,3)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.求下列不等式的解集:
(1)-x2+4x+5<0;
(2)$\frac{2x-1}{3x+1}>0$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若復(fù)數(shù)z=4+3i,其中i是虛數(shù)單位,則復(fù)數(shù)z的模為5,$\frac{1+i}{z}$的值為$\frac{7+i}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.點(diǎn)A(3,1)和點(diǎn)A關(guān)于點(diǎn)$(-\frac{1}{2},\frac{7}{2})$的對稱點(diǎn)B都在直線3x-2y+a=0的同側(cè),則a的取值范圍是(-∞,-7)∪(24,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)f(x)滿足f(x)=1-f(2)log2x,則$f({\frac{1}{2}})$=$\frac{3}{2}$.

查看答案和解析>>

同步練習(xí)冊答案