【題目】概率論起源于博弈游戲.17世紀,曾有一個“賭金分配“的問題:博弈水平相當?shù)募住⒁覂扇诉M行博弈游戲,每局比賽都能分出勝負,沒有平局.雙方約定,各出賭金48枚金幣,先贏3局者可獲得全部賭金;但比賽中途因故終止了,此時甲贏了2局,乙贏了1局.向這96枚金幣的賭金該如何分配?數(shù)學(xué)家費馬和帕斯卡都用了現(xiàn)在稱之為“概率“的知識,合理地給出了賭金分配方案.該分配方案是( )
A.甲48枚,乙48枚B.甲64枚,乙32枚
C.甲72枚,乙24枚D.甲80枚,乙16枚
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)棋藝協(xié)會定期舉辦“以棋會友”的競賽活動,分別包括“中國象棋”、“圍棋”、“五子棋”、“國際象棋”四種比賽,每位協(xié)會會員必須參加其中的兩種棋類比賽,且各隊員之間參加比賽相互獨立;已知甲同學(xué)必選“中國象棋”,不選“國際象棋”,乙同學(xué)從四種比賽中任選兩種參與.
(1)求甲參加圍棋比賽的概率;
(2)求甲、乙兩人參與的兩種比賽都不同的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某醫(yī)院體檢中心為回饋大眾,推出優(yōu)惠活動:對首次參加體檢的人員,按200元/次收費,并注冊成為會員,對會員的后續(xù)體檢給予相應(yīng)優(yōu)惠(本次即第一次),標準如下:
體檢次序 | 第一次 | 第二次 | 第三次 | 第四次 | 第五次及以上 |
收費比例 | 1 | 0.95 | 0.90 | 0.85 | 0.8 |
該體檢中心從所有會員中隨機選取了100位對他們在本中心參加體檢的次數(shù)進行統(tǒng)計,得到數(shù)據(jù)如下表:
體檢次數(shù) | 一次 | 兩次 | 三次 | 四次 | 五次及以上 |
頻數(shù) | 60 | 20 | 12 | 4 | 4 |
假設(shè)該體檢中心為顧客體檢一次的成本費用為150元,根據(jù)所給數(shù)據(jù),解答下列問題:
(1)已知某顧客在此體檢中心參加了3次體檢,求這3次體檢,該體檢中心的平均利潤;
(2)該體檢中心要從這100人里至少體檢3次的會員中,按體檢次數(shù)用分層抽樣的方法抽出5人,再從這5人中抽取2人發(fā)放紀念品,求抽到的2人中恰有1人體檢3次的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】雙曲線定位法是通過測定待定點到至少三個已知點的兩個距離差所進行的一種無線電定位.通過船(待定點)接收到三個發(fā)射臺的電磁波的時間差計算出距離差,兩個距離差即可形成兩條位置雙曲線,兩者相交便可確定船位.我們來看一種簡單的“特殊”狀況;如圖所示,已知三個發(fā)射臺分別為,,且剛好三點共線,已知海里,海里,現(xiàn)以的中點為原點,所在直線為軸建系.現(xiàn)根據(jù)船接收到點與點發(fā)出的電磁波的時間差計算出距離差,得知船在雙曲線的左支上,若船上接到臺發(fā)射的電磁波比臺電磁波早(已知電磁波在空氣中的傳播速度約為,1海里),則點的坐標(單位:海里)為( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的長軸長為4,且經(jīng)過點.
(1)求橢圓的方程;
(2)直線的斜率為,且與橢圓相交于,兩點(異于點),過作的角平分線交橢圓于另一點.證明:直線與坐標軸平行.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)在一次考試后,從全體考生中隨機抽取44名,獲取他們本次考試的數(shù)學(xué)成績(x)和物理成績(y),繪制成如圖散點圖:
根據(jù)散點圖可以看出y與x之間有線性相關(guān)關(guān)系,但圖中有兩個異常點A,B.經(jīng)調(diào)查得知,A考生由于重感冒導(dǎo)致物理考試發(fā)揮失常,B考生因故未能參加物理考試.為了使分析結(jié)果更科學(xué)準確,剔除這兩組數(shù)據(jù)后,對剩下的數(shù)據(jù)作處理,得到一些統(tǒng)計的值:其中xi,yi分別表示這42名同學(xué)的數(shù)學(xué)成績、物理成績,i=1,2,…,42,y與x的相關(guān)系數(shù)r=0.82.
(1)若不剔除A,B兩名考生的數(shù)據(jù),用44組數(shù)據(jù)作回歸分析,設(shè)此時y與x的相關(guān)系數(shù)為r0.試判斷r0與r的大小關(guān)系,并說明理由;
(2)求y關(guān)于x的線性回歸方程(系數(shù)精確到0.01),并估計如果B考生加了這次物理考試(已知B考生的數(shù)學(xué)成績?yōu)?/span>125分),物理成績是多少?(精確到個位);
(3)從概率統(tǒng)計規(guī)律看,本次考試該地區(qū)的物理成績ξ服從正態(tài)分布,以剔除后的物理成績作為樣本,用樣本平均數(shù)作為μ的估計值,用樣本方差s2作為σ2的估計值.試求該地區(qū)5000名考生中,物理成績位于區(qū)間(62.8,85.2)的人數(shù)Z的數(shù)學(xué)期望.
附:①回歸方程中:
②若,則
③11.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠預(yù)購軟件服務(wù),有如下兩種方案:
方案一:軟件服務(wù)公司每日收取工廠60元,對于提供的軟件服務(wù)每次10元;
方案二:軟件服務(wù)公司每日收取工廠200元,若每日軟件服務(wù)不超過15次,不另外收費,若超過15次,超過部分的軟件服務(wù)每次收費標準為20元.
(1)設(shè)日收費為元,每天軟件服務(wù)的次數(shù)為,試寫出兩種方案中與的函數(shù)關(guān)系式;
(2)該工廠對過去100天的軟件服務(wù)的次數(shù)進行了統(tǒng)計,得到如圖所示的條形圖,依據(jù)該統(tǒng)計數(shù)據(jù),把頻率視為概率,從節(jié)約成本的角度考慮,從兩個方案中選擇一個,哪個方案更合適?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】各項均為非負整數(shù)的數(shù)列同時滿足下列條件:
① ;② ;③是的因數(shù)().
(Ⅰ)當時,寫出數(shù)列的前五項;
(Ⅱ)若數(shù)列的前三項互不相等,且時, 為常數(shù),求的值;
(Ⅲ)求證:對任意正整數(shù),存在正整數(shù),使得時, 為常數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com