10.已知拋物線x2=2y的焦點(diǎn)與橢圓$\frac{{y}^{2}}{m}$+$\frac{{x}^{2}}{2}$=1的一個(gè)焦點(diǎn)重合,則m=( 。
A.1B.2C.3D.$\frac{9}{4}$

分析 求出拋物線的焦點(diǎn)坐標(biāo),橢圓的焦點(diǎn)坐標(biāo)重合,求解m即可.

解答 解:拋物線x2=2y的焦點(diǎn)(0,$\frac{1}{2}$)與橢圓$\frac{{y}^{2}}{m}$+$\frac{{x}^{2}}{2}$=1的一個(gè)焦點(diǎn)(0,$\sqrt{m-2}$)重合,可得$\sqrt{m-2}=\frac{1}{2}$,
解得m=$\frac{9}{4}$.
故選:D.

點(diǎn)評(píng) 本題考查橢圓的簡(jiǎn)單性質(zhì)以及拋物線的簡(jiǎn)單性質(zhì)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若隨機(jī)變量X服從正態(tài)分布N(μ,σ2)(σ>0),則P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544,P(μ-3σ<X≤μ+3σ)=0.9974,已知某隨機(jī)變量Y近似服從正態(tài)分布N(2,σ2),若P(Y>3)=0.1587,則P(Y<0)=( 。
A.0.0013B.0.0228C.0.1587D.0.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=x2-ax(a≠0),g(x)=lnx,f(x)圖象與x軸異于原點(diǎn)的交點(diǎn)M處的切線為l1,g(x-1)與x軸的交點(diǎn)N處的切線為l2,并且l1與l2平行.
(Ⅰ)求f(2)的值;
(Ⅱ)已知t∈R,求函數(shù)y=f[g(x)+t],x∈[1,e]的最小值;
(Ⅲ)令F(x)=g(x)+g′(x),x∈(1,+∞),x2>x1>1,對(duì)于兩個(gè)大于1的實(shí)數(shù)α,β滿足:α=mx1+(1-m)x2,β=(1-m)x1+mx2,m∈(0,1).
求證:|F(α)-F(β)|<|F(x1)-F(x2)|成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.下列命題是真命題的是( 。
A.?φ∈R,函數(shù)f(x)=sin(2x+φ)都不是偶函數(shù)
B.?α,β∈R,使cos(α+β)=cosα+cosβ
C.向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(-1,0),則$\overrightarrow{a}$在$\overrightarrow$方向上的投影為2
D.“|x|≤1”是“x≤1”的既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.在△ABC中,A,B,C對(duì)應(yīng)邊分別為a,b,c,且a=1,b=$\sqrt{2},A={30°}$,則B=45°或135°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知函數(shù)f(x)=cos(2x+$\frac{π}{3}$),若存在x1,x2,…xn滿足0≤x1<x2<…<xn≤4π,且|f(x1)-f(x2)|+|f(2)-f(x3)|+…+|f(xn-1)-f(xn)|=16(n≥2,n∈N*),則n的最小值為( 。
A.8B.9C.10D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.在△ABC中,A、B、C的對(duì)邊分別為a、b、c,若B=$\frac{π}{3}$,b=6,sinA-2sinC=0,則a=( 。
A.3B.2$\sqrt{3}$C.4$\sqrt{3}$D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知等比數(shù)列{an}為遞增數(shù)列,若a1>0,且2(an+2-an)=3an+1,則數(shù)列{an}的公比q=( 。
A.2或$\frac{1}{2}$B.2C.$\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知圓C:x2+(y-1)2=5,直線l:mx-y+2-m=0.
(Ⅰ)求證:對(duì)m∈R,直線l與圓C總有兩個(gè)不同的交點(diǎn)A,B;
(Ⅱ)若∠ACB=120°,求m的值;
(Ⅲ)當(dāng)|AB|取最小值時(shí),求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案