6.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(3,-4),則$\overrightarrow{a}$在$\overrightarrow$上的投影為(  )
A.$\sqrt{5}$B.-$\sqrt{5}$C.1D.-1

分析 直接利用向量的數(shù)量積公式求解即可.

解答 解:向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(3,-4),則$\overrightarrow{a}$在$\overrightarrow$上的投影為:$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow|}$=$\frac{3-8}{5}$=-1,
故選:D.

點(diǎn)評(píng) 本題考查平面向量的數(shù)量積的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知f(x)=|x-a|,a∈R.
(Ⅰ)當(dāng)a=2時(shí),求不等式f(x)+|2x-7|≥6的解集;
(Ⅱ)若函數(shù)g(x)=f(x)-|x-5|的值域?yàn)锳,且[-1,2]⊆A,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知銳角△ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且$({a^2}+{b^2}-{c^2})sinC=\sqrt{3}abcosC$.
(1)求角C;
(2)若$c=\sqrt{3}$,求b-2a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知tan95°=k,則tan35°=( 。
A.$\frac{\sqrt{3}-k}{1+\sqrt{3}k}$B.$\frac{k+\sqrt{3}}{1+\sqrt{3}k}$C.$\frac{k+\sqrt{3}}{1-\sqrt{3}k}$D.$\frac{k-\sqrt{3}}{1+\sqrt{3}k}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)M為△ABC所在平面內(nèi)一點(diǎn),$\overrightarrow{BC}$=2$\overrightarrow{CM}$,且$\overrightarrow{AM}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$,則$\frac{μ}{λ}$=( 。
A.-3B.-$\frac{1}{3}$C.$\frac{1}{4}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某企業(yè)生產(chǎn)A、B兩種產(chǎn)品,生產(chǎn) 1t產(chǎn)品所消耗的煤和電及所獲利潤(rùn)如表:
產(chǎn)品所需能源利潤(rùn)(萬元)
煤(t)電(kw•h)
A669
B491 2
又知兩種產(chǎn)品的生產(chǎn)量不少于10t.該企業(yè)用電不超過360kw.h,用煤不超過240t,問生產(chǎn)A、B兩種產(chǎn)品各多少噸時(shí),才能獲得最大的利潤(rùn)?最大的利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=sin(ωx+φ)(ω>0)的部分圖如圖所示,下面結(jié)論正確的是( 。
①函數(shù)f(x)的最小正周期是2π;
②函數(shù)f(x)在區(qū)間[$\frac{π}{12}$,$\frac{π}{6}$]上是增函數(shù);
③函數(shù)f(x)的圖象關(guān)于直線x=$\frac{π}{12}$對(duì)稱;
④函數(shù)f(x)的圖象可由函數(shù)g(x)=sin2x的圖象向左平移$\frac{π}{3}$個(gè)單位長(zhǎng)度得到.
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若(ax2+$\frac{1}{\sqrt{x}}$)5的展開式中x5的系數(shù)-270,則實(shí)數(shù)a=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)y=sin(ωx+$\frac{π}{3}$)(ω>0)的最小正周期為$\frac{2π}{3}$,則該函數(shù)的單調(diào)增區(qū)間為(  )
A.[$\frac{2kπ}{3}$-$\frac{7π}{18}$,$\frac{2kπ}{3}$+$\frac{π}{6}$](k∈Z)B.[$\frac{2kπ}{3}$-$\frac{5π}{18}$,$\frac{2kπ}{3}$+$\frac{π}{18}$](k∈Z)
C.[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$](k∈Z)D.[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z)

查看答案和解析>>

同步練習(xí)冊(cè)答案