16.已知函數(shù)y=sin(ωx+$\frac{π}{3}$)(ω>0)的最小正周期為$\frac{2π}{3}$,則該函數(shù)的單調(diào)增區(qū)間為( 。
A.[$\frac{2kπ}{3}$-$\frac{7π}{18}$,$\frac{2kπ}{3}$+$\frac{π}{6}$](k∈Z)B.[$\frac{2kπ}{3}$-$\frac{5π}{18}$,$\frac{2kπ}{3}$+$\frac{π}{18}$](k∈Z)
C.[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$](k∈Z)D.[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z)

分析 由題意利用正弦函數(shù)的周期性和單調(diào)性,求得該函數(shù)的單調(diào)增區(qū)間.

解答 解:由于函數(shù)y=sin(ωx+$\frac{π}{3}$)(ω>0)的最小正周期為$\frac{2π}{ω}$=$\frac{2π}{3}$,∴ω=3,
令2kπ-$\frac{π}{2}$≤3x+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,求得$\frac{2kπ}{3}$-$\frac{5π}{18}$≤x≤$\frac{2kπ}{3}$+$\frac{π}{18}$,可得函數(shù)的增區(qū)間為[$\frac{2kπ}{3}$-$\frac{5π}{18}$,$\frac{2kπ}{3}$+$\frac{π}{18}$](k∈Z),
故選:B.

點(diǎn)評 本題主要考查正弦函數(shù)的周期性和單調(diào)性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(3,-4),則$\overrightarrow{a}$在$\overrightarrow$上的投影為( 。
A.$\sqrt{5}$B.-$\sqrt{5}$C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列敘述錯(cuò)誤的是( 。
A.若事件A發(fā)生的概率為 P (A),則 0≤P(A)≤1
B.互斥事件不一定是對立事件,但是對立事件一定是互斥事件
C.5 張獎(jiǎng)券中有一張有獎(jiǎng),甲先抽,乙后抽,則乙與甲中獎(jiǎng)的可能性相同
D.某事件發(fā)生的概率是隨著試驗(yàn)次數(shù)的變化而變化的

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖,ABCDEF是圓心為O,半徑為1的圓內(nèi)接正六邊形,將一顆豆子隨機(jī)地扔到該圓內(nèi),用M表示事件“豆子落在正六邊形內(nèi)”,用N表示事件“豆子落在扇形AOF內(nèi)(陰影部分)”,則P(N|M)=( 。
A.$\frac{1}{3}$B.$\frac{1}{3π}$C.$\frac{1}{6}$D.$\frac{1}{6π}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在△ABC中,若AC=2$\sqrt{3}$,BC=2,AB=2,則∠C=( 。
A.30°B.45°C.60°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知(2x2+a)($\frac{2}{{x}^{2}}$-1)5的展開式的各項(xiàng)系數(shù)之和為3.
(1)求a的值;
(2)求(2x2+a)($\frac{2}{{x}^{2}}$-1)5的展開式的常數(shù)項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.遠(yuǎn)古時(shí)代,人們通過在繩子上打結(jié)來記錄數(shù)量,即“結(jié)繩計(jì)數(shù)”,如圖所示的是一位母親記錄的孩子自出生后的天數(shù),在從右向左依次排列的不同繩子上打結(jié),滿七進(jìn)一,根據(jù)圖示可知,孩子已經(jīng)出生的天數(shù)是(  )
A.510B.2178C.3570D.15246

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),定義:設(shè)f″(x)是函數(shù)y=f(x)的導(dǎo)數(shù)y=f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.有同學(xué)發(fā)現(xiàn)“任何一個(gè)三次函數(shù)都有“拐點(diǎn)”;任何一個(gè)三次函數(shù)都有對稱中心;且“拐點(diǎn)”就是對稱中心.”請你根據(jù)這一發(fā)現(xiàn),請回答問題:
若函數(shù)g(x)=$\frac{1}{3}$x3-$\frac{1}{2}$x2+3x-$\frac{5}{12}$+$\frac{x+n}{2x-1}$(n∈R且n$≠-\frac{1}{2}$),則g($\frac{1}{2017}$)+g($\frac{2}{2017}$)+g($\frac{3}{2017}$)+g($\frac{4}{2017}$)+…+g($\frac{2016}{2017}$)=3024.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的圖象如圖所示,為得到g(x)=Asin(ωx+$\frac{π}{6}$)的圖象,可以將f(x)的圖象( 。
A.向左平移$\frac{π}{6}$個(gè)單位長度B.向左平移$\frac{π}{12}$個(gè)單位長度
C.向右平移$\frac{π}{6}$個(gè)單位長度D.向右平移$\frac{π}{12}$個(gè)單位長度

查看答案和解析>>

同步練習(xí)冊答案