分析 將f(x)配方,求得對(duì)稱軸,求得f(2),f(0)=f(4),由二次函數(shù)的最值取得,可能在頂點(diǎn)處或兩端點(diǎn)處,分別計(jì)算即可得到所求范圍.
解答 解:函數(shù)f(x)=|x2-4x+9-2m|+2m
=|(x-2)2+5-2m|+2m,
對(duì)稱軸為x=2,可得
f(0)=f(4)=|9-2m|+2m,
f(2)=|5-2m|+2m,
由f(x)在區(qū)間[0,4]上的最大值是9,
①當(dāng)f(2)=9,即|5-2m|+2m=9,
解得m=$\frac{7}{2}$,
即f(x)═|(x-2)2-2|+7,
此時(shí)f(0)=f(4)=9成立;
②當(dāng)f(0)=f(4)=|9-2m|+2m=9,
可得9-2m≥0,即m≤$\frac{9}{2}$,
f(2)=|5-2m|+2m≤9,
解得m≤$\frac{7}{2}$,
綜上可得m的取值范圍是(-∞,$\frac{7}{2}$].
故答案為:(-∞,$\frac{7}{2}$].
點(diǎn)評(píng) 本題考查函數(shù)的最值的求法,考查分類討論思想方法,以及二次函數(shù)的最值求法,考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 7 | C. | 6 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,2) | B. | (-2,3) | C. | (-2,0) | D. | (2,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 208 | B. | 204 | C. | 200 | D. | 196 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
教師 | 家長(zhǎng) | |
反對(duì) | 40 | 20 |
支持 | 20 | 20 |
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\sqrt{3}$ | B. | $\sqrt{3}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | -$\frac{{\sqrt{3}}}{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com