4.在區(qū)間[-3,2]上隨機(jī)取一個(gè)數(shù)x,則事件“1≤($\frac{1}{2}$)x≤4”發(fā)生的概率為$\frac{2}{5}$.

分析 首先求出滿足不等式的x范圍,由幾何概型公式求解.

解答 解:∵$1≤{({\frac{1}{2}})^x}≤4∴-2≤x≤0$,所以所求概率為$P=\frac{{0-({-2})}}{{2-({-3})}}=\frac{2}{5}$;
故答案為:$\frac{2}{5}$

點(diǎn)評(píng) 本題考查了幾何概型的概率求法;關(guān)鍵是求出滿足條件的事件的范圍,利用區(qū)間長度比求概率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)x、y∈R+且$\frac{1}{x}$+$\frac{9}{y}$=1,則x+y的最小值為( 。
A.4B.8C.16D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在平面直角坐標(biāo)系中,已知兩定點(diǎn)E(1,0)、$G(6,\frac{3}{2})$,⊙C的方程為x2+y2-2mx+(10-2m)y+10m-29=0.當(dāng)⊙C的半徑取最小值時(shí):
(1)求出此時(shí)m的值,并寫出⊙C的標(biāo)準(zhǔn)方程;
(2)在x軸上是否存在異于點(diǎn)E的另外一個(gè)點(diǎn)F,使得對于⊙C上任意一點(diǎn)P,總有$\frac{{|{PE}|}}{{|{PF}|}}$為定值?若存在,求出點(diǎn)F的坐標(biāo),若不存在,請說明你的理由;
(3)在第(2)問的條件下,求$μ=\frac{{4{{|{PG}|}^2}-{{|{PE}|}^2}-6|{PE}|}}{{2|{PG}|-|{PE}|-3}}-2|{PE}|$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如果函數(shù)f(x)=cos(ωx+$\frac{π}{4}$)(ω>0)的相鄰兩個(gè)對稱中心之間的距離為$\frac{π}{6}$,則ω=( 。
A.3B.6C.12D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知tan(π+α)=2.
(1)求$\frac{sinα+2cosα}{3sinα-cosα}$
(2)求4sin2α-3sinαcosα-5cos2α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知向量$\overrightarrow{OA}$=(1,2),$\overrightarrow{OB}$=(2,m),若O,A,B三點(diǎn)能構(gòu)成三角形,則(  )
A.m=4B.m≠4C.m≠-1D.m∈R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)是定義在R上周期為4的奇函數(shù),當(dāng)0<x<2時(shí),f(x)=log2x,則$f({\frac{7}{2}})$的值為(  )
A.1B.-1C.0D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知y>x>0,且x+y=1,那么( 。
A.x<$\frac{x+y}{2}$<2xy<yB.2xy<x<$\frac{x+y}{2}$<yC.x<$\frac{x+y}{2}$<2xy<yD.x<2xy<$\frac{x+y}{2}$<y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.${∫}_{0}^{1}$1dx=1.

查看答案和解析>>

同步練習(xí)冊答案