分析 已知等式利用正弦定理化簡,整理后利用兩角和與差的正弦函數(shù)公式及誘導(dǎo)公式變形,根據(jù)sinA不為0求出cosB的值,由D為邊AC的中點(diǎn),可得2$\overrightarrow{BD}$=$\overrightarrow{BA}$+$\overrightarrow{BC}$,兩邊平方,設(shè)|$\overrightarrow{BA}$|=c,|$\overrightarrow{BC}$|=a,可得4=a2+c2+$\frac{2}{3}$ac,結(jié)合基本不等式的應(yīng)用可得ac的最大值,利用三角形面積公式即可得解.
解答 解:∵bcosC=(3a-c)cosB,
∴利用正弦定理化簡得:(3sinA-sinC)cosB=sinBcosC,
整理得:3sinAcosB=sinBcosC+cosBsinC=sin(B+C)=sinA,
∵sinA≠0,
∴cosB=$\frac{1}{3}$,可得sinB=$\frac{2\sqrt{2}}{3}$,
∵點(diǎn)D為邊AC的中點(diǎn),
∴2$\overrightarrow{BD}$=$\overrightarrow{BA}$+$\overrightarrow{BC}$,
∴兩邊平方可得:4|$\overrightarrow{BD}$|2=|$\overrightarrow{BA}$|2+2|$\overrightarrow{BA}$|•|$\overrightarrow{BC}$|•cos∠ABC+|$\overrightarrow{BC}$|2,…(9分)
設(shè)|$\overrightarrow{BA}$|=c,|$\overrightarrow{BC}$|=a,可得:4=a2+c2+$\frac{2}{3}$ac≥ac,(當(dāng)且僅當(dāng)a=c=2時(shí)等號(hào)成立),
∴ac≤$\frac{3}{2}$,(當(dāng)且僅當(dāng)a=c=2時(shí)等號(hào)成立),
∴S△ABC=$\frac{1}{2}$acsin∠ABC≤$\frac{1}{2}$×$\frac{3}{2}$×$\frac{2\sqrt{2}}{3}$=$\frac{\sqrt{2}}{2}$(當(dāng)且僅當(dāng)a=c=2時(shí)等號(hào)成立),
∴S△ABD=$\frac{1}{2}$S△ABC=$\frac{{\sqrt{2}}}{4}$.(當(dāng)且僅當(dāng)a=c=2時(shí)等號(hào)成立),
∴當(dāng)且僅當(dāng)a=c=2時(shí),△ABD面積的最大值為$\frac{{\sqrt{2}}}{4}$.…(12分)
點(diǎn)評(píng) 本題主要考查了正弦定理,三角形內(nèi)角和定理,三角函數(shù)恒等變換的應(yīng)用,考查了平面向量及其應(yīng)用,考查了基本不等式,三角形面積公式等知識(shí)在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({0,1+\frac{1}{e}})$ | B. | $({1,1+\frac{1}{e}})$ | C. | (1,1+e) | D. | (1,1+e2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | ||||
C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{3}{5}$ | B. | $\frac{3}{5}$ | C. | $-\frac{4}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com