8.已知點(diǎn)P是拋物線y2=4x上的動(dòng)點(diǎn),點(diǎn)P在y軸上的射影是M,點(diǎn)A(7,6),則|PA|+|PM|的最小值為6$\sqrt{2}$-1.

分析 先根據(jù)拋物線方程求得焦點(diǎn)和準(zhǔn)線方程,可把問題轉(zhuǎn)化為P到準(zhǔn)線與P到A點(diǎn)距離之和最小,進(jìn)而根據(jù)拋物線的定義可知拋物線中P到準(zhǔn)線的距離等于P到焦點(diǎn)的距離,進(jìn)而推斷出P、A、F三點(diǎn)共線時(shí)|PF|+|PA|距離之和最小,利用兩點(diǎn)間距離公式求得|FA|,則|PA|+|PM|可求.

解答 解:依題意可知,拋物線焦點(diǎn)為(1,0),
準(zhǔn)線方程為x=-1,
只需直接考慮P到準(zhǔn)線與P到A點(diǎn)距離之和最小即可,
(因?yàn)閤軸與準(zhǔn)線間距離為定值$\frac{p}{2}$=1不會(huì)影響討論結(jié)果),
由于在拋物線中P到準(zhǔn)線的距離等于P到焦點(diǎn)的距離,
此時(shí)問題進(jìn)一步轉(zhuǎn)化為|PF|+|PA|距離之和最小即可.
(F為曲線焦點(diǎn)),
顯然當(dāng)P、A、F三點(diǎn)共線時(shí)|PF|+|PA|距離之和最小,為|FA|,
由兩點(diǎn)間距離公式得|FA|=$\sqrt{(7-1)^{2}+{6}^{2}}$=6$\sqrt{2}$,
那么P到A的距離與P到x軸距離之和的最小值,
為|FA|-$\frac{p}{2}$=6$\sqrt{2}$-1.
故答案為:6$\sqrt{2}$-1.

點(diǎn)評(píng) 本題主要考查了拋物線的定義和簡(jiǎn)單性質(zhì),考查了學(xué)生數(shù)形結(jié)合的思想和分析推理能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若平面向量$\overrightarrow a$與$\overrightarrow b$的夾角為60°,|$\overrightarrow b$|=4,$(\overrightarrow a+2\overrightarrow b)•(\overrightarrow a-3\overrightarrow b)=-72$,則向量|$\overrightarrow a$|=(  )
A.6B.4C.2D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.將函數(shù)y=-x2+x(x∈[0,1])圖象繞點(diǎn)(1,0)順時(shí)針旋轉(zhuǎn)θ角(0<θ<$\frac{π}{2}$)得到曲線C,若曲線C仍是一個(gè)函數(shù)的圖象,則θ的最大值為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在△ABC中,A,B,C所對(duì)的邊長(zhǎng)分別為a,b,c,且$\frac{sinA}{cosB}=2sinC$,則△ABC的形狀為(  )
A.等邊三角形B.直角三角形C.等腰三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若將函數(shù)y=sin(2x+φ)圖象向右平移$\frac{π}{8}$個(gè)單位長(zhǎng)度后關(guān)于y軸對(duì)稱,則φ的值為(  )
A.$\frac{π}{4}$B.$\frac{3π}{8}$C.$\frac{3π}{4}$D.$\frac{5π}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=ax+lnx,x∈[1,e],
(1)若$\lim_{t→0}\frac{{f({1-2t})-f(1)}}{t}=-4$,求f(x)的最大值;
(2)若f(x)≤0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知曲線C:x2+y2-2x-4y+m=0.
(1)若m=1,過點(diǎn)(-2,3)的直線l交曲線C于M,N兩點(diǎn),且|MN|=2$\sqrt{3}$,求直線l的方程;
(2)若曲線C表示圓,且直線x-y-1=0與圓C交于A,B兩點(diǎn),是否存在實(shí)數(shù)m,使得以AB為直徑的圓過原點(diǎn),若存在,求出實(shí)數(shù)m的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知$|\overrightarrow a|=1,|\overrightarrow b|=2,\overrightarrow a$與$\overrightarrow b$的夾角為$\frac{π}{3}$,那么$|4\overrightarrow a-\overrightarrow b|$=$2\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若隨機(jī)變量X的分布列如表,則a2+b2的最小值為( 。
X012
P$\frac{1}{3}$ab
A.$\frac{1}{9}$B.$\frac{2}{9}$C.$\frac{3}{9}$D.$\frac{4}{9}$

查看答案和解析>>

同步練習(xí)冊(cè)答案