分析 由題意可求得函數(shù)是一個周期函數(shù),且周期為2,故可以研究出一個周期上的函數(shù)圖象,再研究所給的區(qū)間包含了幾個周期即可知道函數(shù)g(x)=f(x)-log2017|x-1|的所有零點(diǎn)之和.
解答 解:由題意可得函數(shù)f(x)是R上的偶函數(shù),可得f(-x)=f(x),f(2-x)=f(x),
故可得f(-x)=f(2-x),即f(x)=f(x-2),即函數(shù)的周期是2,
y=log2017|x-1|在(1,+∞)上單調(diào)遞增函數(shù),當(dāng)x=2018時,log2017|x-1|=1,
∴當(dāng)x>2018時,y=log2017|x-1|>1,此時與函數(shù)y=f(x)無交點(diǎn).
根據(jù)周期性,利用y=log5|x-1|的圖象和 f(x)的圖象都關(guān)于直線x=1對稱,則函數(shù)g(x)=f(x)-log2017|x-1|的所有零點(diǎn)之和為-2015-2013-…-3-1+3+5…+2017=2016,
故答案為:2016.
點(diǎn)評 本題考查函數(shù)的零點(diǎn),求解本題,關(guān)鍵是研究出函數(shù)f(x)性質(zhì).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{3}$ | B. | -$\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com