18.若0<a<1,0<b<1,且a≠b,則a+b,$2\sqrt{ab}$,a2+b2,2ab中最大的是a+b.

分析 根據(jù)題意,由基本不等式的性質(zhì)可得a2+b2>2ab,a+b>2$\sqrt{ab}$,進而由0<a<1,0<b<1,可得a2<a,b2<b,進而由不等式的性質(zhì)可得a+b>a2+b2,綜合即可得答案.

解答 解:根據(jù)題意,若0<a<1,0<b<1,且a≠b,
則a2+b2>2ab,a+b>2$\sqrt{ab}$,
又由0<a<1,0<b<1,則a2<a,b2<b,
則有a+b>a2+b2,
故a+b,$2\sqrt{ab}$,a2+b2,2ab中最大的是a+b,
故答案為:a+b.

點評 本題考查基本不等式的性質(zhì),注意利用靈活運用基本不等式的性質(zhì).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知集合A={x|x2-2x-3<0},B={-1,0,1,2,3},則A∩B=(  )
A.{0,1}B.{0,1,2}C.{-1,0,1}D.{-1,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.函數(shù)$f(x)=tan(2x+\frac{π}{6})-1$在(0,π)上的零點是$\frac{π}{24}$或$\frac{13π}{24}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在四棱椎P-ABCD中,底面ABCD為矩形,平面PCD⊥面ABCD,BC=1,AB=2,PC=$PD=\sqrt{2}$,E為PA中點.
(1)求證:PC∥平面BED;
(2)求三棱錐E-PBD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖,在長方體ABCD-A1B1C1D1中,O是DB的中點,直線A1C交平面C1BD于點M,則下列結(jié)論錯誤的是( 。
A.C1,M,O三點共線B.C1,M,O,C四點共面
C.C1,O,A1,M四點共面D.D1,D,O,M四點共面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=2+tcosα}\\{y=tsinα}\end{array}\right.$(t為參數(shù)),以O(shè)為極點,x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為9ρ2cos2θ+16ρ2sin2θ=144,且直線l與曲線C交于P,Q兩點.
(Ⅰ)求曲線C的直角坐標(biāo)方程及直線l恒過的頂點A的坐標(biāo);
(Ⅱ)在(Ⅰ)的條件下,若|AP|•|AQ|=9,求直線l的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}滿足:a1=1,a2=a(a>0).?dāng)?shù)列{bn}滿足bn=anan+1(n∈N*).
(1)若{an}是等差數(shù)列,且b3=12,求a的值及{an}的通項公式;
(2)當(dāng){bn}是公比為a-1的等比數(shù)列時,{an}能否為等比數(shù)列?若能,求出a的值;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知命題p:?x,y∈Z,x2+y2=2015,則?p為( 。
A.?x,y∈Z,x2+y2≠2015B.?x,y∈Z,x2+y2≠2015
C.?x,y∈Z,x2+y2=2015D.不存在x,y∈Z,x2+y2=2015

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)f(x)=lnx,f'(x)是f(x)的導(dǎo)數(shù),若$g(x)=f(x)-\frac{2}{f'(x)}-a$有兩個不相同的零點,則實數(shù)a的取值范圍是(-∞,ln$\frac{1}{2}$-1).

查看答案和解析>>

同步練習(xí)冊答案