7.設(shè)函數(shù)f(x)=|sin(x+$\frac{π}{3}$)|(x∈R),則f(x)(  )
A.周期函數(shù),最小正周期為πB.周期函數(shù),最小正周期為$\frac{π}{2}$
C.周期函數(shù),最小正周期為2πD.非周期函數(shù)

分析 根據(jù)正弦函數(shù)的圖象與性質(zhì),結(jié)合絕對值的意義,即可得出結(jié)論.

解答 解:根據(jù)正弦函數(shù)的圖象與性質(zhì),結(jié)合絕對值的意義知,
函數(shù)f(x)=|sin(x+$\frac{π}{3}$)|(x∈R)是周期函數(shù),且最小正周期為π.
故選:A.

點(diǎn)評 本題考查了正弦函數(shù)的圖象與性質(zhì)應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.一質(zhì)點(diǎn)按規(guī)律s=2t3運(yùn)動,則其在t=1時的瞬時速度為6m/s.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.?dāng)?shù)列{an}中,a1=1,當(dāng)n≥2時,其前n項(xiàng)和為Sn,滿足${S}_{n}^{2}$=an(Sn-$\frac{1}{2}$).
(Ⅰ)求證:數(shù)列{$\frac{1}{{S}_{n}}$}是等差數(shù)列,并求Sn的表達(dá)式;
(Ⅱ)設(shè)bn=$\frac{{S}_{n}}{2n+1}$,數(shù)列{bn}的前n項(xiàng)和為Tn,不等式Tn≥$\frac{1}{18}$(m2-5m)對所有的n∈N*恒成立,求正整數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.求下列圓的標(biāo)準(zhǔn)方程:
(1)圓心是(4,-1),且過點(diǎn)(5,2);
(2)圓心在y軸上,半徑長為5,且過點(diǎn)(3,-4);
(3)求過兩點(diǎn)C(-1,1)和D(1,3),圓心在x軸上的圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)=-2x+1(x∈[0,5])的最小、最大值分別為( 。
A.3,5B.-9,1C.1,9D.1,-9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{e^x},x≥0\\ ax,x<0\end{array}$若方程f(-x)=f(x)有五個不同的實(shí)根,則實(shí)數(shù)a的取值范圍( 。
A.(1,+∞)B.(e,+∞)C.(-∞,-1)D.(-∞,-e)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.隨著經(jīng)濟(jì)社會的發(fā)展,消費(fèi)者對食品安全的關(guān)注度越來越高,通過隨機(jī)詢問某地區(qū)110名居民在購買食品時是否看生產(chǎn)日期與保質(zhì)期等內(nèi)容,得到如下的列聯(lián)表:
年齡與看生產(chǎn)日期與保質(zhì)期列聯(lián)表 單位:名
60歲以下60歲以上總計
看生產(chǎn)日期與保質(zhì)期503080
不看生產(chǎn)日期與保質(zhì)期102030
總計6050110
(1)從這50名60歲以上居民中按是否看生產(chǎn)日期與保質(zhì)期采取分層抽樣,抽取一個容量為5的樣本,問樣本中看與不看生產(chǎn)日期與保質(zhì)期的60歲以上居民各有多少名?
(2)從(1)中的5名居民樣本中隨機(jī)選取兩名作深度訪談,求選到看與不看生產(chǎn)日期與保質(zhì)期的60歲以上居民各1名的概率;
(3)根據(jù)以上列聯(lián)表,問有多大把握認(rèn)為“年齡與在購買食品時看生產(chǎn)日期與保質(zhì)期”有關(guān)?
附:下面的臨界值表供參考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.△ABC的內(nèi)角A,B,C的對邊分別是a,b,c,滿足a2+bc≤b2+c2,則角A的范圍是( 。
A.$(0,\frac{π}{6}]$B.$(0,\frac{π}{3}]$C.$[\frac{π}{6},π)$D.$[\frac{π}{3},π)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)$f(x)=\frac{1}{2}a{x^2}+lnx+bx$,其中a,b∈R.
(1)當(dāng)b=1時,g(x)=f(x)-x在$x=\frac{{\sqrt{2}}}{2}$處取得極值,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若a=0時,函數(shù)f(x)有兩個不同的零點(diǎn)x1,x2,
①求b的取值范圍;
②求證:$\frac{{{x_1}{x_2}}}{e^2}>1$.

查看答案和解析>>

同步練習(xí)冊答案