17.一質(zhì)點按規(guī)律s=2t3運動,則其在t=1時的瞬時速度為6m/s.

分析 由已知中質(zhì)點按規(guī)律S=2t3運動,我們易求出s′,即質(zhì)點運動的瞬時速度表達式,將t=1代入s′的表達式中,即可得到答案.

解答 解:∵質(zhì)點按規(guī)律S=2t3運動,
∴s′=6t2
∵s′|t=1=6×12=6
∴質(zhì)點在1時的瞬時速度為6m/s
故答案為:6.

點評 本題考查的知識點是變化的快慢與變化率,其中根據(jù)質(zhì)點位移與時間的關(guān)系時,求導(dǎo)得到質(zhì)點瞬時速度的表達式是解答本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)θ為第二象限的角,cos($\frac{π}{2}$-θ)=$\frac{3}{5}$,則sin2θ=( 。
A.$\frac{7}{25}$B.$\frac{24}{25}$C.-$\frac{7}{25}$D.-$\frac{24}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.“a>b”是“ac2>bc2”的(  )
A.必要不充分條件B.充分不必要條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知$tanα=\frac{1}{2}$,則cos2α=(  )
A.$\frac{2}{5}$B.$\frac{3}{5}$C.$±\frac{2}{5}$D.$±\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}的前n項和Sn=3n2+10n,{bn}是等差數(shù)列,且an=bn+bn+1
(Ⅰ)求數(shù)列{bn}的通項公式;
(Ⅱ)令${c_n}=\frac{{{{({a_n}+1)}^{n+1}}}}{{{{({b_n}+2)}^n}}}$求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.如圖,點P(x,y)(x>0,y>0)是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)上的動點,F(xiàn)1,F(xiàn)2是雙曲線的焦點,M是∠F1PF2的平分線上一點,且$\overrightarrow{{F}_{2}M}$•$\overrightarrow{MP}$=0.某同學(xué)用以下方法研究|OM|:延長F2M交PF1于點N,可知△PNF2為等腰三角形,且M為F2N的中點,得|OM|=$\frac{1}{2}$|NF1|=…=a.類似地:點P(x,y)(x>0,y>0)是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上的動點,F(xiàn)1,F(xiàn)2是橢圓的焦點,M是∠F1PF2的平分線上一點,且$\overrightarrow{{F}_{2}M}$•$\overrightarrow{MP}$=0,則|OM|的取值范圍是(0,c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)拋物線y2=-12x上一點P到y(tǒng)軸的距離是1,則點P到該拋物線焦點的距離是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知α是第二象限的角,tanα=$\frac{1}{2}$,則cosα=-$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)函數(shù)f(x)=|sin(x+$\frac{π}{3}$)|(x∈R),則f(x)(  )
A.周期函數(shù),最小正周期為πB.周期函數(shù),最小正周期為$\frac{π}{2}$
C.周期函數(shù),最小正周期為2πD.非周期函數(shù)

查看答案和解析>>

同步練習(xí)冊答案