16.△ABC的內角A,B,C的對邊分別是a,b,c,滿足a2+bc≤b2+c2,則角A的范圍是( 。
A.$(0,\frac{π}{6}]$B.$(0,\frac{π}{3}]$C.$[\frac{π}{6},π)$D.$[\frac{π}{3},π)$

分析 由已知利用余弦定理可得cosA$≥\frac{1}{2}$,結合A的范圍,由余弦函數(shù)的圖象和性質即可得解.

解答 解:∵a2+bc≤b2+c2,可得:bc≤b2+c2-a2,
∴cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$≥$\frac{bc}{2bc}$=$\frac{1}{2}$,
∵A∈(0,π),
∴A∈(0,$\frac{π}{3}$].
故選:B.

點評 本題主要考查了余弦定理,余弦函數(shù)的圖象和性質在解三角形中的應用,考查了轉化思想和數(shù)形結合思想,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

6.已知α是第二象限的角,tanα=$\frac{1}{2}$,則cosα=-$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.設函數(shù)f(x)=|sin(x+$\frac{π}{3}$)|(x∈R),則f(x)( 。
A.周期函數(shù),最小正周期為πB.周期函數(shù),最小正周期為$\frac{π}{2}$
C.周期函數(shù),最小正周期為2πD.非周期函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.同時具有以下性質:“①最小正周期是π;②圖象關于直線x=$\frac{π}{3}$對稱;③在$[-\frac{π}{6},\frac{π}{3}]$上是增函數(shù);④一個對稱中心為$(\frac{π}{12},0)$”的一個函數(shù)是( 。
A.$y=sin(\frac{x}{2}+\frac{π}{6})$B.$y=sin(2x+\frac{π}{3})$C.$y=sin(2x-\frac{π}{6})$D.$y=sin(2x-\frac{π}{3})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知雙曲線方程為$\frac{x^2}{m^2}+\frac{y^2}{{{m^2}-4}}$=1(m∈z),則雙曲線的離心率是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.設雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一個焦點為F,虛軸的一個端點為B,線段BF與雙曲線的一條漸近線交于點A,若$\overrightarrow{FA}=2\overrightarrow{AB}$,則雙曲線的離心率為( 。
A.6B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.正方體ABCD-A1B1C1D1中,截面BA1C1和直線AC的位置關系是( 。
A.AC∥平面BA1C1B.AC與平面BA1C1相交
C.AC在平面BA1C1D.上述答案均不正確

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知圓C的圓心為原點,且與截直線$x+y+2\sqrt{6}=0$所得弦長等于圓的半徑.
(1)求圓C的半徑;
(2)點P在直線x=8上,過P點引圓C的兩條切線PA,PB,切點為A,B,
求證:直線AB恒過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知P(x,y)是橢圓$\frac{{x}^{2}}{144}$+$\frac{{y}^{2}}{25}$=1上任意一點,則x+y取值范圍為[-13,13].

查看答案和解析>>

同步練習冊答案