A. | (1,+∞) | B. | (e,+∞) | C. | (-∞,-1) | D. | (-∞,-e) |
分析 求出f(-x)的解析式,根據(jù)x的范圍不同得出兩個(gè)不同的方程,由兩個(gè)方程的關(guān)系得出f(-x)=f(x)在(0,+∞)上有解,根據(jù)函數(shù)圖象和導(dǎo)數(shù)的幾何意義得出a的范圍
解答 解:∵f(x)=$\left\{\begin{array}{l}{e^x},x≥0\\ ax,x<0\end{array}$,
∴f(-x)=$\left\{\begin{array}{l}{-ax,x>0}\\{1,x=0}\\{{e}^{-x},x<0}\end{array}\right.$,
顯然x=0是方程f(-x)=f(x)的一個(gè)根,
當(dāng)x>0時(shí),ex=-ax①,
當(dāng)x<0時(shí),e-x=ax②,
顯然,若x0為方程①的解,則-x0為方程為②的解,
∵方程f(-x)=f(x)有5個(gè)不同的根,
∴方程①在(0,+∞)上有兩解,
做出y=ex(x>0)和y=-ax(x>0)的函數(shù)圖象,如圖所示,
設(shè)y=kx與y=ex相切,切點(diǎn)為(x0,y0),則$\left\{\begin{array}{l}{{e}^{{x}_{0}}=k}\\{k{x}_{0}={e}^{{x}_{0}}}\end{array}\right.$,解得x0=1,k=e,
∵y=ex與y=-ax在(0,+∞)上有兩個(gè)交點(diǎn),
∴-a>e,即a<-e,
故選:D
點(diǎn)評(píng) 本題主要考查了函數(shù)的解析式,以及函數(shù)與方程和根的存在性和根的個(gè)數(shù)的判斷,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | 8 | C. | $\sqrt{17}-1$ | D. | $\sqrt{15}-1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 周期函數(shù),最小正周期為π | B. | 周期函數(shù),最小正周期為$\frac{π}{2}$ | ||
C. | 周期函數(shù),最小正周期為2π | D. | 非周期函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $y=sin(\frac{x}{2}+\frac{π}{6})$ | B. | $y=sin(2x+\frac{π}{3})$ | C. | $y=sin(2x-\frac{π}{6})$ | D. | $y=sin(2x-\frac{π}{3})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 4 | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{20}$-$\frac{{y}^{2}}{5}$=1 | B. | $\frac{{y}^{2}}{20}$-$\frac{{x}^{2}}{5}$=1 | C. | $\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{20}$=1 | D. | $\frac{{x}^{2}}{20}$-$\frac{{y}^{2}}{25}$=1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com