19.設(shè)等差數(shù)列{an}滿足a2=7,a4=3,Sn是數(shù)列{an}的前n項和,則使得Sn取得最大值的自然數(shù)n是( 。
A.4B.5C.6D.7

分析 利用等差數(shù)列通項公式求出首項和公差,由此能求出數(shù)列{an}的前n項和Sn,進(jìn)而能求出使得Sn取得最大值的自然數(shù)n的值.

解答 解:∵等差數(shù)列{an}滿足a2=7,a4=3,
∴$\left\{\begin{array}{l}{{a}_{1}+d=7}\\{{a}_{1}+3d=3}\end{array}\right.$,解得a1=9,d=-2,
∴數(shù)列{an}的前n項和Sn=9n+$\frac{n(n-1)}{2}×(-2)$=-n2+10n=-(n-5)2+25,
∴使得Sn取得最大值的自然數(shù)n是5.
故選:B.

點評 本題考查等差數(shù)列的前n項和取得最大值的項數(shù)的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知直線l過點P(l,l),且與曲線y=x3在點P處的切線互相垂直,則直線l的方程為x+3y-4=0(寫成一般式方程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.下面幾個命題是真命題的是:②④.
①設(shè)Z1、Z2是兩個復(fù)數(shù),若|Z1|=|Z2|,則Z${\;}_{1}^{2}$=Z${\;}_{2}^{2}$.
②兩條直線平行,同旁內(nèi)角互補,若角A、B是兩條平行直線的同旁內(nèi)角,則A+B=180°這種推理是演繹推理.
③一組樣本數(shù)據(jù)的散點圖中,若所有樣本點(xi,yi)(i=1,2,…,n)都在直線y=$\frac{1}{2}$x+1上,則這組樣本數(shù)據(jù)的樣本相關(guān)系數(shù)為$\frac{1}{2}$.
④2位男生和3位女生共5位同學(xué)站成一排.若男生甲不站兩端,3位女生中有且只有兩位女生相鄰,是不同排法的種數(shù)為48種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知sinα-2cosα=0.
(I)求tan(α+$\frac{π}{4}$)的值.
(Ⅱ)求$\frac{sin2αcosα-sinα}{sinα}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知點F(1,0),直線l:x=-1,直線l′垂直l于點P,線段PF的垂直平分線交直線l′于點Q.
(Ⅰ)求點Q的軌跡C的方程;
(Ⅱ)已知軌跡C上的不同兩點M,N與P(1,2)的連線的斜率之和為2,求證:直線MN過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若集合A={0,1,2},B={x|x2≤4,x∈N},則A∩B=( 。
A.{x|0≤x≤2}B.{x|-2≤x≤2}C.{0,1,2}D.{1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知多面體ABCDFE的每個頂點都在球O的表面上,四邊形ABCD為正方形,EF∥BD,且E,F(xiàn)在平面ABCD內(nèi)的射影分別為B,D,若△ABE的面積為2,則球O的表面積的最小值為(  )
A.8$\sqrt{2}$πB.C.12$\sqrt{2}$πD.12π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.定義在(0,+∞)上的函數(shù)f(x)滿足xf′(x)-1<0,且f(1)=1,則不等式f(2x-1)>ln(2x-1)+1的解集是($\frac{1}{2}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.對于等差數(shù)列{an}有如下命題:“若{an}是等差數(shù)列,s,t 是互不相等的正整數(shù),a1=0,則有(s-1)at-(t-1)as=0”類比此命題,補充等比數(shù)列{bn}相應(yīng)的一個正確命題:“若{bn}是等比數(shù)列,s,t 是互不相等的正整數(shù),b1=1,則有$\frac{_{t}^{s-1}}{_{s}^{t-1}}$=1.

查看答案和解析>>

同步練習(xí)冊答案