分析 (I)利用同角三角函數(shù)的基本關(guān)系求得tanα的值,再利用兩角和的正切公式,求得tan(α+$\frac{π}{4}$)的值.
(Ⅱ)利用同角三角函數(shù)的基本關(guān)系,二倍角公式,求得$\frac{sin2αcosα-sinα}{sinα}$的值.
解答 解:(I)∵sinα-2cosα=0,∴tanα=2,∴tan(α+$\frac{π}{4}$)=$\frac{tanα+1}{1-tanα}$=$\frac{2+1}{1-2}$=-3.
(Ⅱ)$\frac{sin2αcosα-sinα}{sinα}$=2cosα•cosα-1=cos2α=$\frac{{cos}^{2}α{-sin}^{2}α}{{sin}^{2}α{+cos}^{2}α}$=$\frac{1{-tan}^{2}α}{1{+tan}^{2}α}$=$\frac{1-4}{1+4}$=-$\frac{3}{5}$.
點評 本題主要考查同角三角函數(shù)的基本關(guān)系,兩角和的正切公式,二倍角公式的應(yīng)用,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=cos($\frac{x}{2}$+$\frac{π}{6}$) | B. | y=sin($\frac{x}{2}$+$\frac{π}{6}$) | C. | y=sin(2x-$\frac{π}{6}$) | D. | y=cos(2x-$\frac{π}{6}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y與x具有負的線性相關(guān)關(guān)系 | |
B. | 若r表示變量與之間相關(guān)系數(shù),則r=0.4 | |
C. | 當廣告費為1萬元時,商品的銷售額為10.4萬元 | |
D. | 當廣告費為1萬元時,商品的銷售額為10.4萬元左右 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | $\frac{2}{3}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,$\frac{\sqrt{5}}{3}$] | B. | [$\frac{\sqrt{5}}{3}$,1) | C. | [$\frac{1}{2}$,1) | D. | (0,$\frac{1}{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com