分析 根據(jù)條件分別判斷函數(shù)是偶函數(shù),以及函數(shù)在[0,+∞)上是減函數(shù),利用函數(shù)奇偶性和單調(diào)性之間的關(guān)系將不等式進行等價轉(zhuǎn)化進行求解即可.
解答 解:由f(-x)=f(x),得函數(shù)f(x)是偶函數(shù),
若對于任意x1,x2∈[0,+∞),x1≠x2,均有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{1}-{x}_{2}}$>0,則此時函數(shù)f(x)為減函數(shù),
若f(-$\frac{1}{3}$)=$\frac{1}{2}$,2f(log${\;}_{\frac{1}{8}}$x)<1,
則f(-$\frac{1}{3}$)=$\frac{1}{2}$,f(log${\;}_{\frac{1}{8}}$x)<$\frac{1}{2}$,
即不等式等價為f(log${\;}_{\frac{1}{8}}$x)<f(-$\frac{1}{3}$),
即f(|log${\;}_{\frac{1}{8}}$x|)<f($\frac{1}{3}$),
則log${\;}_{\frac{1}{8}}$x>$\frac{1}{3}$或log${\;}_{\frac{1}{8}}$x<-$\frac{1}{3}$,
得0<x<($\frac{1}{8}$)${\;}^{\frac{1}{3}}$=$\frac{1}{2}$或x>($\frac{1}{8}$)-${\;}^{\frac{1}{3}}$=2,
即x的取值范圍是(0,$\frac{1}{2}$)∪(2,+∞),
故答案為:(0,$\frac{1}{2}$)∪(2,+∞)
點評 本題主要考查不等式的求解,根據(jù)條件判斷函數(shù)的奇偶性和單調(diào)性,以及利用函數(shù)奇偶性和單調(diào)性的關(guān)系將不等式進行轉(zhuǎn)化是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{4}$ | B. | π | C. | 4π | D. | 16π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1) | B. | (-1,2) | C. | (-1,+∞) | D. | $(\frac{1}{2},1)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{2}$ | B. | 4$\sqrt{2}$ | C. | $\frac{8}{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com