12.設(shè)集合A={x|x2-1<0},B={y|y=2x,x∈A},則A∩B=(  )
A.(0,1)B.(-1,2)C.(-1,+∞)D.$(\frac{1}{2},1)$

分析 分別求出關(guān)于A、B的范圍,取交集即可.

解答 解:A={x|x2-1<0}=(-1,1),
B={y|y=2x,x∈A}=($\frac{1}{2}$,2),
則A∩B=($\frac{1}{2}$,1),
故選:D.

點評 本題考查了集合的運算,考查解不等式問題,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若函數(shù)y=f(x)的圖象上存在兩個點A、B關(guān)于原點對稱,則稱點對[A,B]為y=f(x)的“友情點對”,點對[A,B]與[B,A]可看作同一個“友情點對”,若函數(shù)f(x)=$\left\{\begin{array}{l}2,x<0\\-{x^3}+6{x^2}-9x+a,x≥0\end{array}\right.$恰好有兩個“友情點對”,則實數(shù)a的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.求下列矩陣的逆矩陣.
(1)$(\begin{array}{l}{1}&{0}&{0}&{0}\\{2}&{1}&{0}&{0}\\{3}&{2}&{1}&{0}\\{4}&{3}&{2}&{1}\end{array})$,
(2)$(\begin{array}{l}{3}&{-3}&{4}\\{2}&{-3}&{4}\\{0}&{-1}&{1}\end{array})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若在區(qū)間[-1,5]上任取一個數(shù)b,則函數(shù)f(x)=x-blnx(x>3)在定義域上是單調(diào)函數(shù)的概率為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.一個幾何體的三視圖及其尺寸如圖所示,則該幾何體的表面積為( 。
A.2$\sqrt{2}$+2$\sqrt{6}$+8B.4$\sqrt{2}$+4$\sqrt{6}$+8C.8$\sqrt{2}$+8D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.制定投資計劃時,不僅要考慮可能獲得的盈利,而且要考慮可能出現(xiàn)的虧損.某投資人打算投資甲、乙兩個項目.根據(jù)預(yù)測,甲、乙兩個項目可能的最大盈利分別為100%和50%,可能的最大虧損分別為30%和10%.投資人計劃投資金額不超過10萬元,要求確?赡艿馁Y金虧損不超過1.8萬元.投資人對甲乙兩個項目各投資多少萬元,才能使可能的盈利最大?最大盈利額為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.如圖,已知△ABC中,點M在線段AC上,點P在線段BM上,且滿足$\frac{AM}{MC}$=$\frac{MP}{PB}$=2,若|${\overrightarrow{AB}}$|=2,|${\overrightarrow{AC}}$|=3,∠BAC=120°,則$\overrightarrow{AP}$•$\overrightarrow{BC}$的值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知定義在R上的函數(shù)f(x)滿足f(-x)=f(x),且對于任意x1,x2∈[0,+∞),x1≠x2,均有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{1}-{x}_{2}}$>0,若f(-$\frac{1}{3}$)=$\frac{1}{2}$,2f(log${\;}_{\frac{1}{8}}$x)<1,則x的取值范圍為(0,$\frac{1}{2}$)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)向量$\overrightarrow a=({1,x})$,$\overrightarrow b=({f(x),-x})$且$\overrightarrow a•\overrightarrow b=g(x)$,x∈R,若函數(shù)f(x)為偶函數(shù),則g(x)的解析式可以為( 。
A.x3B.1+xC.cosxD.xex

查看答案和解析>>

同步練習(xí)冊答案