8.已知等比數(shù)列{bn}中,b3+b6=36,b4+b7=18,則b1=( 。
A.$\frac{1}{2}$B.44.5C.64D.128

分析 等比數(shù)列{bn}的公比設(shè)為q,運(yùn)用等比數(shù)列的通項(xiàng)公式,建立方程組,解方程即可得到首項(xiàng)和公比.

解答 解:等比數(shù)列{bn}的公比設(shè)為q,
由b3+b6=36,b4+b7=18,可得:
b1q2+b1q5=36,b1q3+b1q6=18,
解得b1=128,q=$\frac{1}{2}$,
故選:D.

點(diǎn)評(píng) 本題考查等比數(shù)列的通項(xiàng)公式的運(yùn)用,考查方程思想,運(yùn)算求解能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某市居民自來水收費(fèi)標(biāo)準(zhǔn)如下:每戶每月用水不超過4噸時(shí),每噸為1.80元,當(dāng)用水超過4噸時(shí),超過部分每噸3.00元.某月甲、乙兩戶共交水費(fèi)y元,已知甲、乙兩用戶該月用水量分別為5x,3x噸.
(Ⅰ) 若x=1,求該月甲、乙兩戶的水費(fèi);
(Ⅱ) 求y關(guān)于x的函數(shù);
(Ⅲ) 若甲、乙兩戶該月共交水費(fèi)26.4元,分別求出甲、乙兩戶該月的用水量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某射擊隊(duì)有8名隊(duì)員,其中男隊(duì)員5名,女隊(duì)員3名,從中隨機(jī)選3名隊(duì)員參加射擊表演活動(dòng).
(1)求選出的3名隊(duì)員中有一名女隊(duì)員的概率;
(2)求選出的3名隊(duì)員中女隊(duì)員人數(shù)比男隊(duì)員人數(shù)多的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.離散型隨機(jī)變量ξ的分布列為:
ξ123
pp1p2$\frac{1}{4}$
且Eξ=2,則p1=$\frac{1}{4}$;p2=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.有4張卡片,上面分別寫有0,1,2,3.若從這4張卡片中隨機(jī)取出2張組成一個(gè)兩位數(shù),則此數(shù)為偶數(shù)的概率是$\frac{5}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知公比為正數(shù)的等比數(shù)列{an}(n∈N*),首項(xiàng)a1=3,前n項(xiàng)和為Sn,且S3+a3、S5+a5、S4+a4成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{{n{a_n}}}{6},求數(shù)列\(zhòng)left\{{b_n}\right\}的前n項(xiàng)和{T_n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.與向量$\overrightarrow a$=(12,5)垂直的單位向量為( 。
A.($\frac{12}{13}$,$\frac{5}{13}$)B.(-$\frac{12}{13}$,-$\frac{5}{13}$)
C.($-\frac{5}{13}$,$\frac{12}{13}$)或($\frac{5}{13}$,-$\frac{12}{13}$)D.(±$\frac{12}{13}$,$\frac{5}{13}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.求函數(shù)y=tan(3x-$\frac{π}{4}$)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}滿足an=n2+n,設(shè)bn=$\frac{1}{{a}_{n+1}}$+$\frac{1}{{a}_{n+2}}$+…+$\frac{1}{{a}_{2n}}$.
(1)求{bn}的通項(xiàng)公式;
(2)若對(duì)任意的正整數(shù)n,當(dāng)m∈[-1,1]時(shí),不等式t2-2mt+$\frac{1}{6}$>bn恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案