7.集合{x∈Z|(x-2)(x2-3)=0}用列舉法表示為( 。
A.{2,$\sqrt{3}$,-$\sqrt{3}$}B.{2,$\sqrt{3}$}C.{2,-$\sqrt{3}$}D.{2}

分析 根據(jù)題意,解(x-2)(x2-3)=0可得x的值,又由x的取值范圍,即可得答案.

解答 解:根據(jù)題意,(x-2)(x2-3)=0⇒x=2或x=±$\sqrt{3}$,
又由x∈Z,則x=2,
{x∈Z|(x-2)(x2-3)=0}={2};
故選:D.

點(diǎn)評 本題考查集合的表示法,注意集合中x的取值范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.雙曲線$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1(a>0,b>0)$的離心率為$\sqrt{5}$,則其漸近線方程為( 。
A.$y=±\frac{1}{2}x$B.y=±2xC.$y=±\frac{{\sqrt{6}}}{6}x$D.$y=±\sqrt{6}x$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,a=2且(a+b)(sinA-sinB)=(c-b)sinC,則△ABC面積的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{x≥1}\\{y≥\frac{1}{2}x}\\{2x+y≤10}\end{array}\right.$,向量$\overrightarrow{a}$=(y-2x,m),$\overrightarrow$=(1,-1),且$\overrightarrow{a}$∥$\overrightarrow$,則m的最小值為(  )
A.-6B.6C.$\frac{3}{2}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知復(fù)數(shù)z=$\frac{(1-i)^{2}+3(1+i)}{2-i}$,若z2+az+b=1-i,
(1)z,|z|;
(2)求實數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.集合﹛x∈Z|(x-2)(x2-3)=0﹜用列舉法表示為(  )
A.﹛2,$\sqrt{3}$,-$\sqrt{3}$﹜B.﹛2,$\sqrt{3}$,﹜C.﹛2,-$\sqrt{3}$﹜D.﹛2﹜

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.甲、乙、丙三名運(yùn)動員在某次測試中各射擊20次,三人測試成績的頻率分布條形圖分別如圖所示若s,s,s分別表示他制測試成績的標(biāo)準(zhǔn)差,則它們的大小關(guān)系為(  )
A.s<s<sB.s<s<sC.s<s<sD.s<s<s

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在三角形ABC中,∠B=$\frac{π}{3}$,AB=1,BC=2,點(diǎn)D在邊AC上,且$\overrightarrow{AD}$=λ$\overrightarrow{AC}$,λ∈R.若$\overrightarrow{BD}$•$\overrightarrow{BC}$=2,則λ=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列命題中正確命題的個數(shù)是(  )
(1)命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”;
(2)在回歸直線$\widehat{y}$=1+2x中,x增加1個單位時,y一定減少2個單位;
(3)命題p:?x0∈R,使得x02+x0+1<0,則¬p:?x∈R,均有x2+x+1≥0;
(4)設(shè)隨機(jī)變量ξ服從正態(tài)分布N(0,1),若P(ξ>1)=P0,則P(-1<ξ<0)=$\frac{1}{2}$-P0
A.2B.3C.4D.5

查看答案和解析>>

同步練習(xí)冊答案