10.已知橢圓$\frac{{y}^{2}}{{a}^{2}}+\frac{{x}^{2}}{^{2}}=1$(a>b>0)的離心率為$\frac{3}{5}$,兩焦點(diǎn)的距離為3,則a+b=4.5.

分析 由橢圓的焦點(diǎn)在x軸上,2c=3,e=$\frac{c}{a}$=$\frac{3}{5}$,及a2=b2+c2,可解得a和b的值.

解答 解:由圓$\frac{{y}^{2}}{{a}^{2}}+\frac{{x}^{2}}{^{2}}=1$(a>b>0),
橢圓的離心率為e=$\frac{c}{a}$=$\frac{3}{5}$,
兩焦點(diǎn)的距離為3,即2c=3,
a2=b2+c2,
解得:a=2.5,b=2,c=1.5,
a+b=4.5,
故答案為:4.5.

點(diǎn)評 本題考查橢圓的基本性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若直線經(jīng)過拋物線y2=4x的焦點(diǎn)且與拋物線相交于M、N兩點(diǎn),且線段MN中點(diǎn)的橫坐標(biāo)為3,則線段MN的長為(  )
A.$\sqrt{13}$B.8C.$8\sqrt{2}$D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.打撲克的趙、錢、孫、李四家各從一副撲克的52張(去掉兩張王牌后)中隨機(jī)抽取13張,A=“趙家沒得到2”,B=“孫家得到1張2”.
(1)計算P(B|A);
(2)計算P(A|B);
(3)計算P(A∩B);
(4)計算P(A∪B).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在平面直角坐標(biāo)系xOy中,橢圓E的方程為$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{3}$=1,直線l:y=$\frac{1}{2}$x與橢圓E相交于A,B兩點(diǎn),C,D是橢圓E上異于A,B兩點(diǎn),且直線AC,BD相交于點(diǎn)M,直線AD,BC相交于點(diǎn)N,求證:直線MN的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{x}{1+x}$,數(shù)列{an}滿足a1=a(a為常數(shù),且a>0),an+1=f(an),n∈N*
(Ⅰ)計算a2,a3,a4,并由此猜想出數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)用數(shù)學(xué)歸納法證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.若動點(diǎn)M到定點(diǎn)A(0,1)與定直線l:y=3的距離之和為4.
(1)求點(diǎn)M的軌跡方程,并畫出方程的曲線草圖;
(2)記(1)得到的軌跡為曲線C,問曲線C上關(guān)于點(diǎn)B(0,t)(t∈R)對稱的不同點(diǎn)有幾對?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在中心角為60°,半徑為1的扇形OAB的半徑OB上任取一點(diǎn)M,作內(nèi)接矩形MNPQ,設(shè)∠QOA=θ,矩形MNPQ的面積為S.
(1)求S關(guān)于θ的函數(shù)解析式;
(2)求S的最大值;
(3)如果分別在OA,OB上任取一點(diǎn)C、D,使OC=OD,按如圖方式作扇形的內(nèi)接矩形CDEF,設(shè)該矩形的面積為S′,問S′的最大值與S的最大值,哪一個更大,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.三棱柱ABC-A1B1C1的各個頂點(diǎn)都在球O的球面上,且AB=AC=1,BC=$\sqrt{2}$,CC1⊥平面ABC.若球O的表面積為3π,則這個三棱柱的體積是(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知條件p:|x+1|<2,條件q:3x<3,則p是q的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案