分析 (1)利用二倍角公式、兩角和的正弦函數(shù)公式化簡函數(shù)為一個角的一個三角函數(shù)的形式,利用正弦圖象,求α;
(2)如果關于x的方程|f(x)|=m,在區(qū)間(0,π)上有兩個不同的實根,求實數(shù)m的取值范圍.
解答 解:(1)解:y=$\sqrt{3}$cos2x+sinxcosx
=$\sqrt{3}$×$\frac{1+cos2x}{2}$+$\frac{1}{2}sin2x$=$\frac{1}{2}sin2x+\frac{\sqrt{3}}{2}cos2x+\frac{\sqrt{3}}{2}$
=$six(2x+\frac{π}{3})+\frac{\sqrt{3}}{2}$,
∵$f(a)=\frac{{1+\sqrt{3}}}{2}$,∴sin(2α+$\frac{π}{3}$)=$\frac{1}{2}$,解得2$α+\frac{π}{3}$=2k$π+\frac{π}{6}$或2$α+\frac{π}{3}$=2kπ+$\frac{5π}{6}$,
$α=kπ-\frac{π}{12}$或$α=kπ+\frac{π}{4}$ (k∈Z).
(2)畫出y=|f(x)|的圖象,再畫出y=m的圖象,
結合圖象可知它們有兩個不同的交點的情況;
可得m=0,1-$\frac{\sqrt{3}}{2}$<m<$\sqrt{3}$,$\sqrt{3}$<m<1+$\frac{\sqrt{3}}{2}$.
點評 本題考查三角函數(shù)式的化簡求值,二倍角公式、兩角和的正弦函數(shù)公式的應用,考查函數(shù)與方程的思想,數(shù)形結合思想,考查計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ∅∈A | B. | $\sqrt{3}∉A$ | C. | $\sqrt{3}∈A$ | D. | $\sqrt{3}$$\underset{?}{≠}$A |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com