1.已知集合$A=\{x|y=\sqrt{2x-{x^2}}\}$,B={x|-1<x<1},則A∪B=( 。
A.[0,1)B.(-1,2)C.(-1,2]D.(-∞,0]∪(1,+∞)

分析 求函數(shù)的定義域得集合A,根據(jù)并集的定義求出A∪B.

解答 解:由2x-x2≥0,即x(x-2)≤0,解得0≤x≤2,即A=[0,2],
∵B={x|-1<x<1}=(-1,1),
∴A∪B=(-1,2],
故選:C.

點(diǎn)評(píng) 本題考查了解不等式與求函數(shù)的定義由于域問(wèn)題,也考查了集合的運(yùn)算問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.意大利著名數(shù)學(xué)家斐波那契在研究兔子的繁殖問(wèn)題時(shí),發(fā)現(xiàn)有這樣的一列數(shù):1,1,2,3,5,8,…,該數(shù)列的特點(diǎn)是:前兩個(gè)數(shù)均為1,從第三個(gè)數(shù)起,每一個(gè)數(shù)都等于它前面兩個(gè)數(shù)的和.人們把這樣的一列數(shù)組成的數(shù)列{an}稱(chēng)為斐波那契數(shù)列,則$\sum_{i=1}^{8}({a}_{i}{a}_{i+2})$-$\sum_{i=1}^{8}{{a}_{i+1}}^{2}$=( 。
A.0B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.己知等比數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,S6=9S3
(I )求{an}的通項(xiàng)公式
(II)設(shè)bn=1+log2an,求數(shù)列{anbn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)變量x,y滿(mǎn)足約束條件$\left\{\begin{array}{l}x-2y+1≤0\\ x+y-5≤0\\ 4x-2y+1≥0\end{array}\right.$,若目標(biāo)函數(shù)z=mx-y取得最大值的最優(yōu)解有無(wú)數(shù)個(gè),則m=( 。
A.$\frac{1}{2}$B.-1C.2D.$-1或\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.5件產(chǎn)品中混有2件次品,現(xiàn)用某種儀器依次檢驗(yàn),找出次品.
(I)求檢驗(yàn)3次完成檢驗(yàn)任務(wù)的概率;
(II)由于正品和次品對(duì)儀器的損傷程度不同,在一次檢驗(yàn)中,若是正品需費(fèi)用100元,次品則需200元,設(shè)X是完成檢驗(yàn)任務(wù)的費(fèi)用,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.在2016年巴西里約奧運(yùn)會(huì)期間,6名游泳隊(duì)員從左至右排成一排合影留念,最左邊只能排甲或乙,最右端不能排甲,則不同的排法種數(shù)為(  )
A.216B.108C.432D.120

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知命題p:?x∈R,x2-mx+1=0,q:?x∈R,ex-m>0,若¬p∧q為真,則實(shí)數(shù)m的取值范圍是( 。
A.[-2,2]B.(-2,0]C.(-2,0)D.[0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.某研究小組在電腦上進(jìn)行人工降雨模擬實(shí)驗(yàn),準(zhǔn)備用A、B、C三種人工降雨方式分別對(duì)甲,乙,丙三地實(shí)施人工降雨,其實(shí)驗(yàn)統(tǒng)計(jì)結(jié)果如下
方式實(shí)施地點(diǎn)大雨中雨小雨模擬實(shí)驗(yàn)次數(shù)
A2次6次4次12次
B3次6次3次12次
C2次2次8次12次
假定對(duì)甲、乙、丙三地實(shí)施的人工降雨彼此互不影響,且不考慮洪澇災(zāi)害,請(qǐng)根據(jù)統(tǒng)計(jì)數(shù)據(jù):
(Ⅰ)求甲、乙、丙三地都恰為中雨的概率;
(Ⅱ)考慮不同地區(qū)的干旱程度,當(dāng)雨量達(dá)到理想狀態(tài)時(shí),能緩解旱情,若甲、丙地需中雨即達(dá)到理想狀態(tài),乙地必須是大雨才達(dá)到理想狀態(tài),記“甲,乙,丙三地中緩解旱情的個(gè)數(shù)”為隨機(jī)變量X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.若實(shí)數(shù)x,y滿(mǎn)足2x-3≤ln(x+y+1)+ln(x-y-2),則xy=-$\frac{9}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案