11.意大利著名數(shù)學(xué)家斐波那契在研究兔子的繁殖問(wèn)題時(shí),發(fā)現(xiàn)有這樣的一列數(shù):1,1,2,3,5,8,…,該數(shù)列的特點(diǎn)是:前兩個(gè)數(shù)均為1,從第三個(gè)數(shù)起,每一個(gè)數(shù)都等于它前面兩個(gè)數(shù)的和.人們把這樣的一列數(shù)組成的數(shù)列{an}稱(chēng)為斐波那契數(shù)列,則$\sum_{i=1}^{8}({a}_{i}{a}_{i+2})$-$\sum_{i=1}^{8}{{a}_{i+1}}^{2}$=(  )
A.0B.-1C.1D.2

分析 利用an+2=an+1+an,結(jié)合疊加法,即可得出結(jié)論.

解答 解:a1a3-a22=1×2-1=1,
a2a4-a32=1×3-22=-1,
a3a5-a42=2×5-32=1,

a8a10-a92=1
∴$\sum_{i=1}^{8}({a}_{i}{a}_{i+2})$-$\sum_{i=1}^{8}{{a}_{i+1}}^{2}$=(a1a3+a2a4+…a8a10)-(a22+a32+…+a92)=0
故選:A

點(diǎn)評(píng) 本題考查斐波那契數(shù)列,考查疊加法,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.在△ABC中,內(nèi)角A、B、C的對(duì)邊分別為a、b、c,已知$\frac{{4\sqrt{3}}}{3}{S_{△ABC}}={b^2}+{c^2}-{a^2}$,則角A=$\frac{π}{3}$(用弧度制表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.三國(guó)時(shí)代吳國(guó)數(shù)學(xué)家趙爽所著《周髀算經(jīng)》中用趙爽弦圖給出了勾股定理的絕妙證明,如圖是趙爽弦圖,圖中包含四個(gè)全等的勾股形及一個(gè)小正方形,分別涂成朱色和黃色,若朱色的勾股形中較大的銳角α為$\frac{π}{3}$,現(xiàn)向該趙爽弦圖中隨機(jī)地投擲一枚飛鏢,則飛鏢落在黃色的小正方形內(nèi)的概率為1-$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.如果x,y滿(mǎn)足$\left\{\begin{array}{l}{x-2y-4≤0}\\{x+y-1≥0}\\{2x-y-2≥0}\end{array}\right.$,則z=$\frac{y+1}{x+1}$的取值范圍是(  )
A.[0,2)B.[0,2]C.[-1,$\frac{1}{2}$]D.[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{1}{3}$x2+ax2+bx-$\frac{5}{6}$(a>0,b∈R),f(x)在x=x1和x=x2處取得極值,且|x1-x2|=$\sqrt{5}$,曲線(xiàn)y=f(x)在(1,f(1))處的切線(xiàn)與直線(xiàn)x+y=0垂直.
(Ⅰ)求f(x)的解析式; 
(Ⅱ)證明關(guān)于x的方程(k2+1)ex-1-kf′(x)=0至多只有兩個(gè)實(shí)數(shù)根(其中f′(x)是f(x)的導(dǎo)函數(shù),e是自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.某農(nóng)科所發(fā)現(xiàn),一中作物的年收獲量y(單位:kg)與它”相近“作物的株數(shù)x具有線(xiàn)性相關(guān)關(guān)系(所謂兩株作物”相近“是指它們的直線(xiàn)距離不超過(guò)1m),并分別記錄了相近作物的株數(shù)為1,2,3,5,6,7時(shí),該作物的年收獲量的相關(guān)數(shù)據(jù)如下:
X123567
y605553464541
(Ⅰ)求該作物的年收獲量y關(guān)于它”相近“作物的株數(shù)x的線(xiàn)性回歸方程;
(Ⅱ)農(nóng)科所在如圖所示的正方形地塊的每個(gè)格點(diǎn)(指縱、橫直線(xiàn)的交叉點(diǎn))處都種了一株該作物,其中每一個(gè)小正方形的面積為1,若在所種作物中隨機(jī)選取一株,求它的年收獲量的分布列與數(shù)學(xué)期望.(注:年收獲量以線(xiàn)性回歸方程計(jì)算所得數(shù)據(jù)為依據(jù))
附:對(duì)于一組數(shù)據(jù)(x1,y1),(x2,y2),…,(xn,yn),其回歸直線(xiàn)y=a+bx的斜率和截距的最小二乘估計(jì)分別為$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n•{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若命題“?t∈R,t2-2t-a<0”是假命題,則實(shí)數(shù)a的取值范圍是(-∞,-1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知命題p:函數(shù)f(x)=|cos2x-sinxcosx-$\frac{1}{2}$|的最小正周期為π;命題q:函數(shù)f(x)=ln$\frac{3+x}{3-x}$的圖象關(guān)于原點(diǎn)中心對(duì)稱(chēng),則下列命題是真命題的是( 。
A.p∧qB.p∨qC.(¬p)∧(¬q)D.p∨(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知集合$A=\{x|y=\sqrt{2x-{x^2}}\}$,B={x|-1<x<1},則A∪B=( 。
A.[0,1)B.(-1,2)C.(-1,2]D.(-∞,0]∪(1,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案