18.已知集合A={y|y=log2x,x>2},$B=\{x|y=\sqrt{x-1}\}$,則( 。
A.A⊆BB.A∪B=AC.A∩B=∅D.A∩∁RB≠∅

分析 化簡集合A,B,即可得出結(jié)論.

解答 解:A={y|y=log2x,x>2}={y|y>1},$B=\{x|y=\sqrt{x-1}\}$={x|x≥1},
∴A⊆B,
故選A.

點(diǎn)評(píng) 本題考查集合的關(guān)系,正確化簡集合是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.不等式x+y-1>0表示的區(qū)域在直線x+y-1=0的( 。
A.左上方B.左下方C.右上方D.右下方

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知點(diǎn)A(x1,y1),B(x2,y2)是函數(shù)y=sinx(-π<x<0)上的兩個(gè)不同點(diǎn),且x1<x2,則對(duì)于下列四個(gè)不等式:
①$\frac{{sin{x_1}}}{x_1}<\frac{{sin{x_2}}}{x_2}$;
②sinx1<sinx2;
③$\frac{1}{2}({sin{x_1}+sin{x_2}})>sin\frac{{{x_1}+{x_2}}}{2}$;
④$sin\frac{x_1}{2}>sin\frac{x_2}{2}$.
其中正確不等式的個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.關(guān)于x的方程( k-2 )x2-( 3k+6 )x+6k=0有兩個(gè)負(fù)根,則k的取值范圍是$[{-\frac{2}{5},0})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知曲線C的極坐標(biāo)方程是ρ=2cosθ,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線L的參數(shù)方程是$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t+m}\\{y=\frac{1}{2}t}\end{array}\right.$(t為參數(shù)).
(1)求曲線C的直角坐標(biāo)方程和直線L的普通方程;
(2)設(shè)點(diǎn)P(m,0),若直線L與曲線C交于A,B兩點(diǎn),且|PA|•|PB|=1,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=3sin$\frac{x}{2}$-4cos$\frac{x}{2}$的圖象關(guān)于直線x=θ對(duì)稱,則sinθ=-$\frac{24}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.△ABC滿足下列條件:①b=3,c=4,B=30°;②a=5,b=8,A=30°;③c=6,b=3$\sqrt{3}$,B=60°;④c=9,b=12,C=60°.其中有兩個(gè)解的是(  )
A.①②B.①④C.①②③D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若α,β為銳角,tan(α+β)=3,$tanβ=\frac{1}{2}$,則α的值為(  )
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{6}$D.$\frac{π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖是正方體的平面展開圖.關(guān)于這個(gè)正方體,有以下判斷:①EC⊥平面AFN;
②CN∥平面AFB③BM∥DE④平面BDE∥平面NCF,其中正確判斷的序號(hào)是( 。
A.①③B.②③C.①②④D.②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案