10.已知a∈R,i是虛數(shù)單位,若z=a+$\sqrt{3}$i,z•$\overline{z}$=4,則a=( 。
A.1或-1B.$\sqrt{7}$或-$\sqrt{7}$C.-$\sqrt{3}$D.$\sqrt{3}$

分析 求得z的共軛復(fù)數(shù),根據(jù)復(fù)數(shù)的運算,即可求得a的值.

解答 解:由z=a+$\sqrt{3}$i,則z的共軛復(fù)數(shù)$\overline{z}$=a-$\sqrt{3}$i,
由z•$\overline{z}$=(a+$\sqrt{3}$i)(a-$\sqrt{3}$i)=a2+3=4,則a2=1,解得:a=±1,
∴a的值為1或-1,
故選A.

點評 本題考查共軛復(fù)數(shù)的求法,復(fù)數(shù)的乘法運算,考查計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.三名工人加工同一種零件,他們在一天中的工作情況如圖所示,其中Ai的橫、縱坐標分別為第i名工人上午的工作時間和加工的零件數(shù),點Bi的橫、縱坐標分別為第i名工人下午的工作時間和加工的零件數(shù),i=1,2,3.
(1)記Qi為第i名工人在這一天中加工的零件總數(shù),則Q1,Q2,Q3中最大的是Q1
(2)記pi為第i名工人在這一天中平均每小時加工的零件數(shù),則p1,p2,p3中最大的是p2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在正方體ABCD-A1B1C1D1中,給出下列結(jié)論:
(1)AC⊥B1D1           
(2)AC1⊥BC1
(3)AB1與BC1成角為60°
  (4)AB與A1C成角為45°
所有正確結(jié)論的序號(1)、(3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如圖,在圓柱O1O2內(nèi)有一個球O,該球與圓柱的上、下底面及母線均相切,記圓柱O1O2的體積為V1,球O的體積為V2,則$\frac{{V}_{1}}{{V}_{2}}$的值是$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)函數(shù)f(x)=(1-x2)ex
(1)討論f(x)的單調(diào)性;
(2)當x≥0時,f(x)≤ax+1,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若a>b>0,且ab=1,則下列不等式成立的是( 。
A.a+$\frac{1}$<$\frac{{2}^{a}}$<log2(a+b))B.$\frac{{2}^{a}}$<log2(a+b)<a+$\frac{1}$
C.a+$\frac{1}$<log2(a+b)<$\frac{{2}^{a}}$D.log2(a+b))<a+$\frac{1}$<$\frac{{2}^{a}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)函數(shù)f(x)=sin(ωx-$\frac{π}{6}$)+sin(ωx-$\frac{π}{2}$),其中0<ω<3,已知f($\frac{π}{6}$)=0.
(Ⅰ)求ω;
(Ⅱ)將函數(shù)y=f(x)的圖象上各點的橫坐標伸長為原來的2倍(縱坐標不變),再將得到的圖象向左平移$\frac{π}{4}$個單位,得到函數(shù)y=g(x)的圖象,求g(x)在[-$\frac{π}{4}$,$\frac{3π}{4}$]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在極坐標系中,直線4ρcos(θ-$\frac{π}{6}$)+1=0與圓ρ=2sinθ的公共點的個數(shù)為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)復(fù)數(shù)z=cosθ-sinθ+$\sqrt{2}$+i(cosθ+sinθ),當θ為何值時,|z|取得最大值,并求此最大值.

查看答案和解析>>

同步練習(xí)冊答案