19.已知f (x)=cosx,且f1(x)=f'(x),fn+1(x)=fn'(x)(n∈N*),則f2017(x)=(  )
A.-sin xB.-cos xC.sin xD.cos x

分析 根據(jù)題意,依次計算f1(x)、f2(x)、f3(x)、f4(x)的值,分析可得fn+4(x)=fn(x),即fn(x)的周期為4,進而分析可得f2017(x)=f1(x),即可得答案.

解答 解:根據(jù)題意,f (x)=cosx,
則f1(x)=f'(x)=-sinx,
f2(x)=f1'(x)=-cosx,
f3(x)=f2'(x)=sinx,
f4(x)=f3'(x)=cosx,

fn+4(x)=fn(x),即fn(x)的周期為4,
則f2017(x)=f1(x)=-sinx;
故選:A.

點評 本題主要考查導(dǎo)數(shù)的計算,根據(jù)導(dǎo)數(shù)公式求出函數(shù)的周期性是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知等比數(shù)列{an}的前n項和為Sn,a1=1,且S1,2S2,3S3成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)$\frac{1}{b_n}={log_3}{a_{n+1}}•lo{g_3}{a_{n+2}}$求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.$已知\overrightarrow a=(sinθ,\frac{1}{3}),\overrightarrow b=(cosθ,-1),θ∈R$
(1)若$\overrightarrow a$∥$\overrightarrow b$,求tanθ的值;      
(2)若$\overrightarrow a⊥\overrightarrow b$,求sin2θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an}中,a1=2,an+1=2-$\frac{1}{{a}_{n}}$,數(shù)列{bn}中,bn=$\frac{1}{{a}_{n}-1}$,其中n∈N*
(Ⅰ)求證:數(shù)列{bn}是等差數(shù)列;
(Ⅱ)設(shè)Sn是數(shù)列{$\frac{1}{3}$bn}的前n項和,求$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+…+$\frac{1}{{S}_{n}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.現(xiàn)有5張分別標有數(shù)字1,2,3,4,5的卡片,它們大小和顏色完全相同.從中隨機抽取2張組成兩位數(shù),則兩位數(shù)為偶數(shù)的概率為$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.正方體ABCD-A1B1C1D1,6個面的中心分別為E,F(xiàn),G,H,I,J,甲從這6個點鐘任選兩個點連成直線,乙也從這6個點鐘任選兩個點連成直線,則所得的兩條直線互相垂直的概率$\frac{1}{75}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若函數(shù)$f(x)=lgsin({ωx+\frac{π}{6}})({ω>0})$的最小正周期為π,則f(x)在[0,π]上的遞減區(qū)間為[$\frac{π}{6}$,$\frac{5π}{12}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.有一段長為11米的木棍,現(xiàn)要折成兩段,兩段都不小于3米的概率有多大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)f(x)=cos(x+φ)(0≤φ≤π)的定義域為R,若f(x)為奇函數(shù),則φ=( 。
A.0B.$\frac{π}{4}$C.$\frac{π}{2}$D.π

查看答案和解析>>

同步練習(xí)冊答案