12.若向量$\overrightarrow{a}$=(-3,5),$\overrightarrow$=(4,1),則$\overrightarrow{a}$•$\overrightarrow$=( 。
A.17B.-7C.7D.-6

分析 利用平面向量坐標(biāo)運(yùn)算的數(shù)量積公式能求出$\overrightarrow{a}•\overrightarrow$.

解答 解:∵向量$\overrightarrow{a}$=(-3,5),$\overrightarrow$=(4,1),
∴$\overrightarrow{a}$•$\overrightarrow$=-12+5=-7.
故選:B.

點(diǎn)評(píng) 本題考查向量的數(shù)量積公式的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意向量的數(shù)量積公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.若復(fù)數(shù)z=(x2-3x+2)+(x-1)i為純虛數(shù),則實(shí)數(shù)x=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.據(jù)俄羅斯新羅西斯克2015年5月17日電 記者吳敏、鄭文達(dá)報(bào)道:當(dāng)?shù)貢r(shí)間17日,參加中俄“海上聯(lián)合-2015(Ⅰ)”軍事演習(xí)的9艘艦艇抵達(dá)地中海預(yù)定海域,混編組成海上聯(lián)合集群.接到命令后我軍在港口M要將一件重要物品用小艇送到一艘正在航行的俄軍輪船上,在小艇出發(fā)時(shí),輪船位于港口M北偏西30°且與該港口相距20海里的A處,并正以30海里/小時(shí)的航行速度沿正東方向勻速行駛.假設(shè)該小艇沿直線方向以v海里/小時(shí)的航行速度勻速行駛,經(jīng)過(guò)t小時(shí)與輪船相遇.
(1)若希望相遇時(shí)小艇的航行距離最小,則小艇航行速度的大小應(yīng)為多少?
(2)為保證小艇在30分鐘內(nèi)(含30分鐘)能與輪船相遇,試確定小艇航行速度的最小值并說(shuō)明你的推理過(guò)程;
(3)是否存在v,使得小艇以v海里/小時(shí)的航行速度行駛,總能有兩種不同的航行方向與輪船相遇?若存在,試確定v的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)m,n是兩條不同的直線,α,β,γ是三個(gè)不同的平面,給出下列四個(gè)命題:
①若m⊥α,m⊥n,則n∥α;
②若α∥β,β∥λ,m⊥α,則m⊥γ;
③若m∥α,n∥α,則m∥n;
④若α⊥γ,β⊥γ,則α∥β.
其中正確命題的個(gè)數(shù)有( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知sin(α-70°)=α,則cos(α+20°)=α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)y=sin2x+sin2x+3cos2x,求
(1)函數(shù)的最小值及此時(shí)的x的集合;
(2)函數(shù)的單調(diào)減區(qū)間;
(3)當(dāng)x∈[-$\frac{π}{4}$,$\frac{π}{4}$]時(shí),求y=f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知圓的半徑為πcm,則120°的圓心角所對(duì)的弧長(zhǎng)是( 。
A.$\frac{π}{3}$cmB.$\frac{{π}^{2}}{3}$cmC.$\frac{2π}{3}$cmD.$\frac{2{π}^{2}}{3}$cm

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.下列說(shuō)法正確的是( 。
A.一個(gè)人打靶,打了10發(fā)子彈,有7發(fā)子彈中靶,因此這個(gè)人中靶的概率為0.7
B.一個(gè)同學(xué)做擲硬幣試驗(yàn),擲了6次,一定有3次“正面朝上”
C.某地發(fā)行福利彩票,其回報(bào)率為47%,有個(gè)人花了100元錢買彩票,一定會(huì)有47元的回報(bào)
D.大量試驗(yàn)后,一個(gè)事件發(fā)生的頻率在0.75附近波動(dòng),可以估計(jì)這個(gè)事件發(fā)生的概率為0.75

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知函數(shù)f(x)=2x+x2-xln2-2,若函數(shù)g(x)=|f(x)|-loga(x+2)(a>1)在區(qū)間[-1,1]上有4個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.(1,2)B.(2,+∞)C.[3${\;}^{\frac{1}{1-ln2}}$,+∞)D.(2,3${\;}^{\frac{1}{1-ln2}}$]

查看答案和解析>>

同步練習(xí)冊(cè)答案