A. | 12 | B. | $\frac{52}{5}$ | C. | $\frac{46}{5}$ | D. | 2 |
分析 畫出約束條件表示的平面區(qū)域,根據(jù)圖形找出最優(yōu)解,求出目標函數(shù)的最大值.
解答 解:畫出約束條件$\left\{\begin{array}{l}{2x-3y+6≥0}\\{2x-5y+10≤0}\\{x-6≤0}\end{array}\right.$表示的平面區(qū)域,如圖所示;
目標函數(shù)z=x+y化為y=-x+z,
由$\left\{\begin{array}{l}{x-6=0}\\{2x-3y+6=0}\end{array}\right.$,解得A(6,6);
所以目標函數(shù)z過點A時取得最大值,
為zmax=6+6=12.
故選:A.
點評 本題考查了簡單的線性規(guī)劃應用問題,是基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,2$\sqrt{2}$] | B. | [2$\sqrt{2}$,$\frac{9}{2}$] | C. | (-∞,3] | D. | [$\frac{9}{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -5 | B. | 5 | C. | -$\frac{1}{5}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 值域為(0,+∞) | B. | 圖象關于x軸對稱 | ||
C. | 定義域為R | D. | 在區(qū)間(-∞,0)上單調(diào)遞增 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com