分析 一批產(chǎn)品的次品率為P=0.12,從中任取5件,取得各次品數(shù)X~B(5,0.12),由此能求出取得各次品數(shù)的概率.
解答 解:∵一批產(chǎn)品的次品率為P=0.12,從中任取5件,
∴取得各次品數(shù)X~B(5,0.12),
∴恰好取到0件次品的概率:P(X=0)=${C}_{5}^{0}(1-0.12)^{5}$≈0.527732,
恰好取到1件次品的概率:P(X=1)=${C}_{5}^{1}×0.12×(1-0.12)^{4}$≈0.359817,
恰好取到2件次品的概率:P(X=2)=${C}_{5}^{2}(0.12)^{2}(1-0.12)^{3}$≈0.098132,
恰好取到3件次品的概率:P(X=3)=${C}_{5}^{3}(0.12)^{3}(1-0.12)^{2}$≈0.013382,
恰好取到4件次品的概率:P(X=4)=${C}_{5}^{4}(0.12)^{4}(1-0.12)$≈0.000912,
恰好取到5件次品的概率:P(X=5)=0.125≈0.000025.
點評 本題考查概率的求法,是基礎題,解題時要認真審題,注意二項分布的性質(zhì)的合理運用.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}\overrightarrow{a}$-$\frac{3}{4}$$\overrightarrow$ | B. | $\frac{1}{2}\overrightarrow$-$\frac{3}{4}\overrightarrow{a}$ | C. | $\frac{3}{4}\overrightarrow$-$\frac{1}{2}\overrightarrow{a}$ | D. | $\frac{3}{4}\overrightarrow{a}$-$\frac{1}{2}\overrightarrow$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com