7.已知圓P過A(-8,0),B(2,0),C(0,4)三點,圓Q:x2+y2-2ay+a2-4=0.
(1)求圓P的方程;
(2)如果圓P和圓Q相外切,求實數(shù)a的值.

分析 (1)設(shè)圓P的方程為x2+y2+Dx+Ey+F=0,利用待寶系數(shù)法能求出圓P的方程.
(2)圓P的圓心P(-3,0),半徑r=5,圓Q的圓心Q(0,a),半徑r=2,由圓P和圓Q相外切,得|PQ|=5+2=7,由此利用兩點間距離公式能求出a.

解答 解:(1)設(shè)圓P的方程為x2+y2+Dx+Ey+F=0,
∵圓P過A(-8,0),B(2,0),C(0,4)三點,
∴$\left\{\begin{array}{l}{64-8D+F=0}\\{4+2D+F=0}\\{16+4E+F=0}\end{array}\right.$,解得D=6,E=0,F(xiàn)=-16,
∴圓P的方程為x2+y2+6x-16=0.
(2)圓P的方程即(x+3)2+y2=25,∴圓心P(-3,0),半徑r=5,
圓Q:x2+y2-2ay+a2-4=0,即x2+(y-a)2=4,
圓心Q(0,a),半徑r=2,
∵圓P和圓Q相外切,∴|PQ|=5+2=7,
∴(-3-0)2+(0-a)2=72,
解得a=$±2\sqrt{10}$.

點評 本題考查圓的方程的求法,考查實數(shù)值的求法,考查直線與圓的位置關(guān)系,兩點間距離公式的應(yīng)用等基礎(chǔ)知識,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若函數(shù)f(x)=log2(x2-ax-3a)在區(qū)間(-∞,-2]上是減函數(shù),則實數(shù)a的取值范圍是( 。
A.[-4,4)B.(-4,4]C.(-∞,4)D.(-∞,4)∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{m•{4}^{x}+1}{{2}^{x}}$-m(m∈R).
(1)若函數(shù)f(x)有零點,求實數(shù)m的取值范圍;
(2)若對任意的x∈[-1,0],都有0≤f(x)≤1,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.對任意的n∈N*,數(shù)列{an}滿足|an-cos2n|≤$\frac{1}{3}$且|an+sin2n|≤$\frac{2}{3}$,則an等于( 。
A.$\frac{2}{3}$-sin2nB.sin2n-$\frac{2}{3}$C.$\frac{1}{3}$-cos2nD.cos2n+$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.當(dāng)曲線y=-$\sqrt{4-{x}^{2}}$與直線kx-y+2k-4=0有兩個相異的交點時,實數(shù)k的取值范圍是( 。
A.(0,$\frac{3}{4}$)B.($\frac{5}{12}$,$\frac{3}{4}$]C.($\frac{3}{4}$,1]D.($\frac{3}{4}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.對于任意的實數(shù)λ∈R,直線(2λ+1)x+(λ-1)y+1=0恒過定點$(-\frac{1}{3},\frac{2}{3})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.當(dāng)x>0時,函數(shù)$y=\frac{{{x^2}+4}}{x}$的最小值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.為了研究一種昆蟲的產(chǎn)卵數(shù)y和溫度x是否有關(guān),現(xiàn)收集了7組觀測數(shù)據(jù)列于下表中,并做出了散點圖,發(fā)現(xiàn)樣本點并沒有分布在某個帶狀區(qū)域內(nèi),兩個變量并不呈現(xiàn)線性相關(guān)關(guān)系,現(xiàn)分別用模型①$y={C_1}{x^2}+{C_2}$與模型;②$y={e^{{C_3}x+{C_4}}}$作為產(chǎn)卵數(shù)y和溫度x的回歸方程來建立兩個變量之間的關(guān)系.
溫度x/°C20222426283032
產(chǎn)卵數(shù)y/個610212464113322
t=x24004845766767849001024
z=lny1.792.303.043.184.164.735.77
$\overline x$$\overline t$$\overline y$$\overline z$
26692803.57
$\frac{{\sum_{i=1}^7{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^7{{{({x_i}-\overline x)}^2}}}}$$\frac{{\sum_{i=1}^7{({t_i}-\overline t)({y_i}-\overline y)}}}{{\sum_{i=1}^7{{{({t_i}-\overline t)}^2}}}}$$\frac{{\sum_{i=1}^7{({z_i}-\overline z)({x_i}-\overline x)}}}{{\sum_{i=1}^7{{{({x_i}-\overline x)}^2}}}}$$\frac{{\sum_{i=1}^7{({z_i}-\overline z)({t_i}-\overline t)}}}{{\sum_{i=1}^7{{{({t_i}-\overline t)}^2}}}}$
1157.540.430.320.00012
其中${t_i}={x_i}^2$,$\overline t=\frac{1}{7}\sum_{i=1}^7{t_i}$,zi=lnyi,$\overline z=\frac{1}{7}\sum_{i=1}^7{z_i}$,
附:對于一組數(shù)據(jù)(μ1,ν1),(μ2,ν2),…(μn,νn),其回歸直線v=βμ+α的斜率和截距的最小二乘估計分別為:$β=\frac{{\sum_{i=1}^n{({μ_i}-\bar μ)({ν_i}-\bar ν)}}}{{\sum_{i=1}^n{{{({μ_i}-\bar μ)}^2}}}}$,$α=\bar ν-β\bar μ$
(1)根據(jù)表中數(shù)據(jù),分別建立兩個模型下y關(guān)于x的回歸方程;并在兩個模型下分別估計溫度為30°C時的產(chǎn)卵數(shù).(C1,C2,C3,C4與估計值均精確到小數(shù)點后兩位)(參考數(shù)據(jù):e4.65≈104.58,e4.85≈127.74,e5.05≈156.02)
(2)若模型①、②的相關(guān)指數(shù)計算分別為${R_1}^2=0.82,{R_2}^2=0.96$.,請根據(jù)相關(guān)指數(shù)判斷哪個模型的擬合效果更好.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知|$\overrightarrow{a}$|=3,|$\overrightarrow$|=4,且<$\overrightarrow{a}$,$\overrightarrow$>=120°,則|$\overrightarrow{a}$+$\overline$|=$\sqrt{13}$.

查看答案和解析>>

同步練習(xí)冊答案