8.在等比數(shù)列{an}中,a2•a3是a12和a42的等差中項(xiàng),則$\frac{{S}_{6}}{{S}_{3}}$=( 。
A.1B.2C.3D.4

分析 a2•a3是a12和a42的等差中項(xiàng),可得2a2•a3=a12+a42,2q3=1+q6,解得q.即可得出.

解答 解:∵a2•a3是a12和a42的等差中項(xiàng),∴2a2•a3=a12+a42,∴2q3=1+q6,解得q3=1,解得q=1.
$\frac{{S}_{6}}{{S}_{3}}$=$\frac{6{a}_{1}}{3{a}_{1}}$=2,
故選:B.

點(diǎn)評 本題考查了等比數(shù)列的通項(xiàng)公式與求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某市為了解各校(同學(xué))課程的教學(xué)效果,組織全市各學(xué)校高二年級全體學(xué)生參加了國學(xué)知識水平測試,測試成績從高到低依次分為A、B、C、D四個(gè)等級,隨機(jī)調(diào)閱了甲、乙兩所學(xué)校各60名學(xué)生的成績,得到如圖所示分布圖:

(Ⅰ)試確定圖中實(shí)數(shù)a與b的值;
(Ⅱ)若將等級A、B、C、D依次按照90分、80分、60分、50分轉(zhuǎn)換成分?jǐn)?shù),試分別估計(jì)兩校學(xué)生國學(xué)成績的均值;
(Ⅲ)從兩校獲得A等級的同學(xué)中按比例抽取5人參加集訓(xùn),集訓(xùn)后由于成績相當(dāng),決定從中隨機(jī)選2人代表本市參加省級比賽,求兩人來自同一學(xué)校的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知圓錐母線長為5,底面圓半徑長為4,點(diǎn)M是母線PA的中點(diǎn),AB是底面圓的直徑,點(diǎn)C是弧AB的中點(diǎn);
(1)求三棱錐P-ACO的體積;
(2)求異面直線MC與PO所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在直三棱柱ABC-A1BlC1中,平面α與棱AB,AC,A1C1,A1B1分別交于點(diǎn)E,F(xiàn),G,H,且直線AA1∥平面α.有下列三個(gè)命題:①四邊形EFGH是平行四邊形;②平面α∥平面BCC1B1;③平面α⊥平面BCFE.其中正確的命題有( 。
A.①②B.②③C.①③D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知角α的終邊與單位圓交于點(diǎn)(-$\frac{2\sqrt{5}}{5}$,-$\frac{\sqrt{5}}{5}$),則sin2α的值為(  )
A.$\frac{\sqrt{5}}{5}$B.-$\frac{\sqrt{5}}{5}$C.-$\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.宿州市日前提出,要提升市民的生活質(zhì)量,改善民生,促進(jìn)“中國夢”的實(shí)線,為此,某記者在街頭隨機(jī)采訪了100名市民,根據(jù)他們對“中國夢”實(shí)線的信心情況進(jìn)行統(tǒng)計(jì)分析,得到如下分布表:
信心級別  非常有信心有信心 不知道 沒信心 
 信心指數(shù)(分?jǐn)?shù)) 90 60 30 6
 人數(shù)(名) 42 38 14 6
(Ⅰ)以這100名市民信心指數(shù)為樣本來估計(jì)市民的總體信心指數(shù),若要從全市市民中隨機(jī)任選3人進(jìn)行信心跟蹤,記ξ表示抽到信心級別為“非常有信心或有信心”市民人數(shù),求ξ的分布列及期望;
(Ⅱ)從這100名市民中,任選兩人,記他們的信心指數(shù)分別為m、n,求|m-n|≥60的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.執(zhí)行如圖所示的程序框圖,則輸出S的值為(  )
A.16B.32C.64D.1024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)拋物線x2=4y的焦點(diǎn)為F,過點(diǎn)F作斜率為k(k>0)的直線l與拋物線相交于A、B兩點(diǎn),且點(diǎn)P恰為AB的中點(diǎn),過點(diǎn)P作x軸的垂線與拋物線交于點(diǎn)M,若|MF|=4,則直線l的方程為( 。
A.$y=2\sqrt{2}x+1$B.$y=\sqrt{3}x+1$C.$y=\sqrt{2}x+1$D.$y=2\sqrt{3}x+2$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知四邊形ABCD為直角梯形,AD∥BC,AB⊥BC,BC=2AB=4,AD=3,F(xiàn)為BC中點(diǎn),EF∥AB,EF與AD交于點(diǎn)E,沿EF將四邊形EFCD折起,使得平面ABFE⊥平面EFCD,連接AD,BC,AC.
(1)求證:BE∥平面ACD;
(2)求三棱錐的B-ACD體積.

查看答案和解析>>

同步練習(xí)冊答案