分析 (1)由題意知,各局比賽結(jié)果相互獨立,求出對應(yīng)的概率值即可;
(2)由題意知,隨機變量X的所有可能的取值,根據(jù)事件的互斥性計算概率值,從而寫出X的分布列.
解答 解:(1)記“甲隊以3:0勝利”為事件A1,
“甲隊以3:1勝利”為事件A2,
“甲隊以3:2勝利”為事件A3,
由題意知,各局比賽結(jié)果相互獨立,
所以P(A1)=${(\frac{2}{3})}^{3}$=$\frac{8}{27}$,
P(A2)=${C}_{3}^{2}$•${(\frac{2}{3})}^{2}$•(1-$\frac{2}{3}$)•$\frac{2}{3}$=$\frac{8}{27}$,
P(A3)=${C}_{4}^{2}$•${(\frac{2}{3})}^{2}$•${(1-\frac{2}{3})}^{2}$•$\frac{1}{2}$=$\frac{4}{27}$;
所以甲隊以3:0勝利、以3:1勝利的概率都為$\frac{8}{27}$,
以3:2勝利的概率為$\frac{4}{27}$;
(2)設(shè)“乙隊以3:2勝利”為事件A4,
由題意知,各局比賽結(jié)果相互獨立,
所以P(A4)=${C}_{4}^{2}$•${(1-\frac{2}{3})}^{2}$•${(\frac{2}{3})}^{2}$•(1-$\frac{1}{2}$)=$\frac{4}{27}$;
由題意知,隨機變量X的所有可能的取值為0,1,2,3,
根據(jù)事件的互斥性得
P(X=0)=P(A1+A2)=P(A1)+P(A2)=$\frac{16}{27}$;
又P(X=1)=P(A3)=$\frac{4}{27}$,
P(X=2)=P(A4)=$\frac{4}{27}$,
P(X=3)=1-P(X=0)-P(X=1)-P(X=2)=$\frac{3}{27}$,
故X的分布列為
X | 0 | 1 | 2 | 3 |
P | $\frac{16}{27}$ | $\frac{4}{27}$ | $\frac{4}{27}$ | $\frac{3}{27}$ |
點評 本題考查了相互獨立性事件的概率計算與分布列問題,是綜合題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{π}{3}$,0) | B. | ( $\frac{π}{4}$,0) | C. | (-$\frac{π}{12}$,0) | D. | ($\frac{π}{2}$,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-2,-1] | B. | (1,2) | C. | [-2,-1)∪(1,2] | D. | [-2,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{6}π$ | B. | 6π | C. | $4\sqrt{3}π$ | D. | 12π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com