14.已知隨機(jī)變量X服從正態(tài)分布N(2,σ2),且P(X<4)=0.6,則P(0<X<2)=( 。
A.0.1B.0.2C.0.3D.0.4

分析 先計算P(2<X<4),再根據(jù)對稱性得出P(0<X<2),

解答 解:P(2<X<4)=P(X<4)-P(X<2)=0.6-0.5=0.1,
∴P(0<X<2)=P(2<X<4)=0.1.
故選A.

點(diǎn)評 本題考查了正態(tài)分布的對稱性特點(diǎn),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在兩個分類變量的獨(dú)立性檢驗(yàn)過程中有如下表格:
P(K2≥k00.500.400.250.150.100.050.0250.0100.005
k00.4550.7081.3232.0722.7063.8415.0246.6357.879
已知兩個分類變量X和Y,如果在犯錯誤的概率不超過0.05的前提下認(rèn)為X和Y有關(guān)系,則隨機(jī)變量K2的觀測值可以位于的區(qū)間是( 。
A.(0.05,0.10)B.(0.025,0.05)C.(2.706,3.841)D.(3.841,5.024)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知Sn為數(shù)列{an}的前n項(xiàng)和,且an=$\left\{\begin{array}{l}{2{a}_{n-1},n≥6}\\{{a}_{n-1}+1,2≤n<6}\end{array}\right.$,a1=a(a∈R)給出下列3個結(jié)論:①數(shù)列{an+5}一定是等比數(shù)列;②若S5<100,則a<18;③若a3,a6,a9成等比數(shù)列,則a=-$\frac{4}{3}$.其中,所有正確結(jié)論的序號為( 。
A.B.②③C.①③D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列說法:
①將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上或減去同一個常數(shù)后,均值與方差都不變;
②設(shè)有一個回歸方程$\widehaty=5-3x$,變量x增加一個單位時,y平均增加3個單位;
③線性回歸方程$\widehaty=bx+a$必經(jīng)過點(diǎn)$(\overline x,\overline y)$;
④在吸煙與患肺病這兩個分類變量的計算中,從獨(dú)立性檢驗(yàn)知,有99%的把握認(rèn)為吸煙與患肺病有關(guān)系時,我們說現(xiàn)有100人吸煙,那么其中有99人患肺。渲绣e誤的個數(shù)是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知集合A={x|x2=4},B={x|ax=2}.若B⊆A,則實(shí)數(shù)a的取值集合是{-1,0,1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)$f(x)=\frac{a-1}{x}-2a,g(x)=-ax-1$,a>0.
(1)設(shè)h(x)=f(x)-g(x),若函數(shù)h(x)在$({0,\frac{1}{2}})$上是減函數(shù),求實(shí)數(shù)a的取值范圍;
(2)若f(x)≥g(x)+lnx在[1,+∞)上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.方程l n x=$\frac{2}{x}$必有一個根所在的區(qū)間是( 。
A.(1,2)B.(2,3)C.(e,3)D.(e,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.某工廠生產(chǎn)A、B、C三種不同型號的產(chǎn)品,產(chǎn)品數(shù)量之比依次為k:5:3,現(xiàn)用分層抽樣方法抽出一個容量為120的樣本,已知A種型號產(chǎn)品共抽取了24件,則C種型號產(chǎn)品抽取的件數(shù)為36.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{{a}^{x}-1}{{a}^{x}+1}$(a>0且a≠1)
(Ⅰ)判斷函數(shù)f(x)的奇偶性,并加以證明;
(Ⅱ)求f(x)的值域.

查看答案和解析>>

同步練習(xí)冊答案