14.已知函數(shù)f(x)=x+sinx.x∈(-$\frac{π}{2}$,$\frac{π}{2}$),函數(shù)g(x)的定義域?yàn)閷?shí)數(shù)集R,函數(shù)h(x)=f(x)+g(x),
(1)若函數(shù)g(x)是奇函數(shù),判斷并證明函數(shù)h(x)的奇偶性;
(2)若函數(shù)g(x)是單調(diào)增函數(shù),用反證法證明函數(shù)h(x)的圖象與x軸至多有一個交點(diǎn).

分析 (1)先判斷f(x)的奇偶性,再計算h(-x)與h(x)的關(guān)系得出結(jié)論;
(2)假設(shè)h(x)的圖象與x軸至少有兩個交點(diǎn),不妨設(shè)兩交點(diǎn)橫坐標(biāo)為x1,x2,且x1<x2,則h(x1)=h(x2),于是(x2)-g(x1)=f(x1)-f(x2),根據(jù)f(x)的單調(diào)性得出g(x)的單調(diào)性,從而得出矛盾.

解答 解:(1)h(x)是奇函數(shù),證明如下:
∵f(-x)=-x+sin(-x)=-x-sinx=-f(x),
∴f(x)是奇函數(shù),
又g(x)是奇函數(shù),∴g(-x)=-g(x),
∴h(-x)=f(-x)+g(-x)=-f(x)-g(x)=-h(x),
∴h(x)是奇函數(shù).
(2)假設(shè)h(x)的圖象與x軸至少有兩個交點(diǎn),不妨設(shè)兩交點(diǎn)橫坐標(biāo)為x1,x2,且x1<x2,
則h(x1)=h(x2)=0,
即f(x1)+g(x1)=f(x2)+g(x2),∴g(x2)-g(x1)=f(x1)-f(x2)=(x1-x2)+(sinx1-sinx2),
∵x1,x2∈(0,$\frac{π}{2}$),且x1<x2,
∴x1-x2<0,sinx1-sinx2<0
∴(x1-x2)+(sinx1-sinx2)<0,即g(x2)-g(x1)<0,
∴g(x1)>g(x2),
∴g(x)是減函數(shù),與g(x)是增函數(shù)矛盾,
∴假設(shè)不成立,即函數(shù)h(x)的圖象與x軸至多有一個交點(diǎn).

點(diǎn)評 本題考查了函數(shù)奇偶性、單調(diào)性判斷,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.要得到函數(shù)y=sin2(x$-\frac{π}{6}$),x∈R的圖象,只需把函數(shù)f(x)=sin2x,x∈R的圖象(  )
A.向右平移$\frac{π}{6}$個單位B.向右平移$\frac{π}{12}$個單位
C.向左平移$\frac{π}{6}$個單位D.向左平移$\frac{π}{12}$個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若(2x-1)2017=a0+a1x+a2x2+…+a2017x2017,則a0+a1+2a2+…+2017a2017=4033.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知向量$\overrightarrow{a}$=(4,5cosα),$\overrightarrow$=(3,-4tanα).
(1)若$\overrightarrow{a}$∥$\overrightarrow$,求sinα的值;
(2)若$\overrightarrow{a}$⊥$\overrightarrow$,且α為銳角,求cos(2α-$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知數(shù)列{an}滿足$\frac{a_1}{2}•\frac{a_2}{5}•\frac{a_3}{8}…\frac{a_n}{3n-1}=3n+2(n∈{N^*})$,Sn為{an}的前n項(xiàng)和,則S10=( 。
A.210B.180C.185D.190

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知定義在R上的函數(shù)f(x)=asinωx+bcosωx(ω>0)可利用輔助角公式化為f(x)=$\sqrt{{a}^{2}+^{2}}$sin(ωx+φ) (其中tanφ=$\frac{a}$).若f(x)的周期為π,且對一切x∈R,都有f(x)$≤f(\frac{π}{12})=4$;
(1)求函數(shù)f(x)的表達(dá)式;
(2)若g(x)=f($\frac{π}{6}-x$),求函數(shù)g(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.秦九韶是我國南宋時期的數(shù)學(xué)家,他在所著的《數(shù)書九章》中提出的多項(xiàng)式求值的秦九韶算法,至今仍是比較先進(jìn)的算法.如圖所示的程序框圖給出了利用秦九韶算法求某多項(xiàng)式值的一個實(shí)例,若輸入n,x的值分別為3,3,則輸出v的值為( 。
A.16B.18C.48D.143

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在正三角形ABC中,D是BC上的點(diǎn),$AB=1,BD=\frac{1}{3}$,則$\overrightarrow{AB}$•$\overrightarrow{AD}$=$\frac{5}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0)的右頂點(diǎn)為(1,0),且離心率為$\frac{{\sqrt{2}}}{2}$.
(1)求橢圓C的方程;
(2)設(shè)橢圓C的上焦點(diǎn)為F,過F且斜率為-$\sqrt{2}$的直線l與橢圓C交于A,B兩點(diǎn),若$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$(其中O為坐標(biāo)原點(diǎn)),求點(diǎn)P的坐標(biāo)及四邊形OAPB的面積.

查看答案和解析>>

同步練習(xí)冊答案