分析 (1)曲線C:ρsin2θ=2acosθ(a>0),即ρ2sin2θ=2aρcosθ(a>0),利用互化公式可得直角坐標(biāo)方程.過(guò)點(diǎn)P(-2,-4)的直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)),消去參數(shù)t可得普通方程.
(2)把直線l的參數(shù)方程代入y2=2ax(a>0).可得:t2-(8$\sqrt{2}$+2$\sqrt{2}$a)t+8a+32=0,根據(jù)|PA||PB|-$\sqrt{2}$(|PA|+|PB|)=36,可得|t1•t2|-$\sqrt{2}$|t1+t2|=36,利用根與系數(shù)的關(guān)系即可得出.
解答 解:(1)曲線C:ρsin2θ=2acosθ(a>0),即ρ2sin2θ=2aρcosθ(a>0),利用互化公式可得直角坐標(biāo)方程:
y2=2ax(a>0).
過(guò)點(diǎn)P(-2,-4)的直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)),消去參數(shù)t可得普通方程:x-y-2=0.
(2)把直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù))代入y2=2ax(a>0).
可得:t2-(8$\sqrt{2}$+2$\sqrt{2}$a)t+8a+32=0,
∴t1+t2=8$\sqrt{2}$+2$\sqrt{2}$a,t1•t2=8a+32.
∵|PA||PB|-$\sqrt{2}$(|PA|+|PB|)=36,
∴|t1•t2|-$\sqrt{2}$|t1+t2|=36,
∴8a+32-$\sqrt{2}$(8$\sqrt{2}$+2$\sqrt{2}$a)=36,
解得a=5.
點(diǎn)評(píng) 本題考查了參數(shù)方程方程化為直角坐標(biāo)方程、極坐標(biāo)方程化為直角坐標(biāo)方程、直線與拋物線相交弦長(zhǎng)問(wèn)題、一元二次方程的根與系數(shù)的關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | $\sqrt{5}$ | C. | $2\sqrt{6}$ | D. | $\sqrt{15}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1 | B. | $\frac{1}{2}$ | C. | $-\frac{{\sqrt{2}}}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | -1 | C. | ±1 | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com