【題目】現(xiàn)有甲、乙兩種不同規(guī)格的產(chǎn)品,其質(zhì)量按測(cè)試指標(biāo)分?jǐn)?shù)進(jìn)行劃分,其中分?jǐn)?shù)不小于分的為合格品,否則為次品.現(xiàn)隨機(jī)抽取兩種產(chǎn)品各件進(jìn)行檢測(cè),其結(jié)果如下:

測(cè)試指數(shù)分?jǐn)?shù)

甲產(chǎn)品

乙產(chǎn)品

1)根據(jù)以上數(shù)據(jù),完成下邊的列聯(lián)表,并判斷是否有的有把握認(rèn)為兩種產(chǎn)品的質(zhì)量有明顯差異?

甲產(chǎn)品

乙產(chǎn)品

合計(jì)

合格品

次品

2)已知生產(chǎn)件甲產(chǎn)品,若為合格品,則可盈利元,若為次品,則虧損元;生產(chǎn)件乙產(chǎn)品,若為合格品,則可盈利元,若為次品,則虧損.為生產(chǎn)件甲產(chǎn)品和件乙產(chǎn)品所得的總利潤(rùn),求隨機(jī)變量的分布列和數(shù)學(xué)期望(將產(chǎn)品的合格率作為抽檢一件這種產(chǎn)品為合格品的概率)

參考公式:

【答案】1)填表見解析;沒有的有把握認(rèn)為兩種產(chǎn)品的質(zhì)量有明顯差異(2)詳見解析

【解析】

1)根據(jù)已知數(shù)據(jù)得出加甲乙產(chǎn)品數(shù)和合格品與次品數(shù),根據(jù)公式計(jì)算并下結(jié)論;

2)隨機(jī)變量可能取值,分別計(jì)算概率并寫出分布列,計(jì)算相關(guān)期望.

1)列聯(lián)表如下:

甲產(chǎn)品

乙產(chǎn)品

合計(jì)

合格品

次品

合計(jì)

沒有的有把握認(rèn)為兩種產(chǎn)品的質(zhì)量有明顯差異

依題意,生產(chǎn)一件甲,乙產(chǎn)品為合格品的概率分別為

隨機(jī)變量可能取值

的分布列為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年上半年我國(guó)多個(gè)省市暴發(fā)了非洲豬瘟疫情,生豬大量病死,存欄量急劇下降,一時(shí)間豬肉價(jià)格暴漲,其他肉類價(jià)格也跟著大幅上揚(yáng),嚴(yán)重影響了居民的生活.為了解決這個(gè)問題,我國(guó)政府一方面鼓勵(lì)有條件的企業(yè)和散戶防控疫情,擴(kuò)大生產(chǎn);另一方面積極向多個(gè)國(guó)家開放豬肉進(jìn)口,擴(kuò)大肉源,確保市場(chǎng)供給穩(wěn)定.某大型生豬生產(chǎn)企業(yè)分析當(dāng)前市場(chǎng)形勢(shì),決定響應(yīng)政府號(hào)召,擴(kuò)大生產(chǎn)決策層調(diào)閱了該企業(yè)過去生產(chǎn)相關(guān)數(shù)據(jù),就一天中一頭豬的平均成本與生豬存欄數(shù)量之間的關(guān)系進(jìn)行研究.現(xiàn)相關(guān)數(shù)據(jù)統(tǒng)計(jì)如下表:

生豬存欄數(shù)量(千頭)

2

3

4

5

8

頭豬每天平均成本(元)

3.2

2.4

2

1.9

1.5

1)研究員甲根據(jù)以上數(shù)據(jù)認(rèn)為具有線性回歸關(guān)系,請(qǐng)幫他求出關(guān)于的線.性回歸方程(保留小數(shù)點(diǎn)后兩位有效數(shù)字)

2)研究員乙根據(jù)以上數(shù)據(jù)得出的回歸模型:.為了評(píng)價(jià)兩種模型的擬合效果,請(qǐng)完成以下任務(wù):

①完成下表(計(jì)算結(jié)果精確到0.01元)(備注:稱為相應(yīng)于點(diǎn)的殘差);

生豬存欄數(shù)量(千頭)

2

3

4

5

8

頭豬每天平均成本(元)

3.2

2.4

2

1.9

1.5

模型甲

估計(jì)值

殘差

模型乙

估計(jì)值

3.2

2.4

2

1.76

1.4

殘差

0

0

0

0.14

0.1

②分別計(jì)算模型甲與模型乙的殘差平方和,并通過比較的大小,判斷哪個(gè)模型擬合效果更好.

3)根據(jù)市場(chǎng)調(diào)查,生豬存欄數(shù)量達(dá)到1萬頭時(shí),飼養(yǎng)一頭豬每一天的平均收入為7.5元;生豬存欄數(shù)量達(dá)到1.2萬頭時(shí),飼養(yǎng)一頭豬每一天的平均收入為7.2元若按(2)中擬合效果較好的模型計(jì)算一天中一頭豬的平均成本,問該生豬存欄數(shù)量選擇1萬頭還是1.2萬頭能獲得更多利潤(rùn)?請(qǐng)說明理由.(利潤(rùn)=收入-成本)

參考公式:.

參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】國(guó)家規(guī)定每年的日以后的天為當(dāng)年的暑假.某鋼琴培訓(xùn)機(jī)構(gòu)對(duì)位鋼琴老師暑假一天的授課量進(jìn)行了統(tǒng)計(jì),如下表所示:

授課量(單位:小時(shí))

頻數(shù)

培訓(xùn)機(jī)構(gòu)專業(yè)人員統(tǒng)計(jì)近年該校每年暑假天的課時(shí)量情況如下表:

課時(shí)量(單位:天)

頻數(shù)

(同組數(shù)據(jù)以這組數(shù)據(jù)的中間值作代表)

1)估計(jì)位鋼琴老師一日的授課量的平均數(shù);

2)若以(1)中確定的平均數(shù)作為上述一天的授課量.已知當(dāng)?shù)厥谡n價(jià)為/小時(shí),每天的各類生活成本為/天;若不授課,不計(jì)成本,請(qǐng)依據(jù)往年的統(tǒng)計(jì)數(shù)據(jù),估計(jì)一位鋼琴老師天暑假授課利潤(rùn)不少于萬元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知兩點(diǎn)分別為橢圓的右頂點(diǎn)和上頂點(diǎn),且,右準(zhǔn)線的方程為.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)過點(diǎn)的直線交橢圓于另一點(diǎn),交于點(diǎn).若以為直徑的圓經(jīng)過原點(diǎn),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)給出兩個(gè)條件:①,②,從中選出一個(gè)條件補(bǔ)充在下面的問題中,并以此為依據(jù)求解問題:(選出一種可行的條件解答,若兩個(gè)都選,則按第一個(gè)解答計(jì)分)在中,分別為內(nèi)角所對(duì)的邊( ).

1)求;

2)若,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線y=k(x+1)(k>0)與拋物線C相交于AB兩點(diǎn),FC的焦點(diǎn),若|FA|=2|FB|,則|FA| =

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系x0y中,把曲線α為參數(shù))上每個(gè)點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>倍,縱坐標(biāo)不變,得到曲線以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程

1)寫出的普通方程和的直角坐標(biāo)方程;

2)設(shè)點(diǎn)M上,點(diǎn)N上,求|MN|的最小值以及此時(shí)M的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重.大氣污染可引起心悸.呼吸困難等心肺疾病.為了解某市心肺疾病是否與性別有關(guān),在某醫(yī)院隨機(jī)的對(duì)入院人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:

患心肺疾病

不患心肺疾病

合計(jì)

合計(jì)

已知在全部人中隨機(jī)抽取人,抽到患心肺疾病的人的概率為.

1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為患心肺疾病與性別有關(guān)?請(qǐng)說明你的理由;

2)已知在不患心肺疾病的位男性中,有位從事的是戶外作業(yè)的工作.為了指導(dǎo)市民盡可能地減少因霧霾天氣對(duì)身體的傷害,現(xiàn)從不患心肺疾病的位男性中,選出人進(jìn)行問卷調(diào)查,求所選的人中至少有一位從事的是戶外作業(yè)的概率.

下面的臨界值表供參考:

(參考公式,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】201912月以來,湖北武漢市發(fā)現(xiàn)多起病毒性肺炎病例,并迅速在全國(guó)范圍內(nèi)開始傳播,專家組認(rèn)為,本次病毒性肺炎病例的病原體初步判定為新型冠狀病毒,該病毒存在人與人之間的傳染,可以通過與患者的密切接觸進(jìn)行傳染.我們把與患者有過密切接觸的人群稱為密切接觸者,每位密切接觸者被感染后即被稱為患者.已知每位密切接觸者在接觸一個(gè)患者后被感染的概率為,某位患者在隔離之前,每天有位密切接觸者,其中被感染的人數(shù)為,假設(shè)每位密切接觸者不再接觸其他患者.

1)求一天內(nèi)被感染人數(shù)為的概率、的關(guān)系式和的數(shù)學(xué)期望;

2)該病毒在進(jìn)入人體后有14天的潛伏期,在這14天的潛伏期內(nèi)患者無任何癥狀,為病毒傳播的最佳時(shí)間,設(shè)每位患者在被感染后的第二天又有位密切接觸者,從某一名患者被感染,按第1天算起,第天新增患者的數(shù)學(xué)期望記為.

i)求數(shù)列的通項(xiàng)公式,并證明數(shù)列為等比數(shù)列;

ii)若戴口罩能降低每位密切接觸者患病概率,降低后的患病概率,當(dāng)取最大值時(shí),計(jì)算此時(shí)所對(duì)應(yīng)的值和此時(shí)對(duì)應(yīng)的值,根據(jù)計(jì)算結(jié)果說明戴口罩的必要性.(取

(結(jié)果保留整數(shù),參考數(shù)據(jù):

查看答案和解析>>

同步練習(xí)冊(cè)答案