20.若x、y滿足約束條件$\left\{\begin{array}{l}3x+y-6≤0\\ x+y≥2\\ y≤2\end{array}\right.$,則x2+y2的最小值為( 。
A.$\sqrt{2}$B.2C.4D.5

分析 作出不等式組對應(yīng)的平面區(qū)域,利用x2+y2的幾何意義進行求解即可.

解答 解:作出不等式組對應(yīng)的平面區(qū)域,
x2+y2的幾何意義是區(qū)域內(nèi)的點P到原點距離的平方,
由圖象知,當OP垂直直線x+y=2時,
此時OP的距離最小,
此時O到直線x+y-2=0得距離d=$\frac{|-2|}{\sqrt{2}}$=$\sqrt{2}$,
則x2+y2的最小值為d2=($\sqrt{2}$)2=2,
故選:B.

點評 本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合以及點到直線的距離公式是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某城市有甲、乙、丙三個旅游景點,一位游客游覽這三個景點的概率分別是0.4、0.5、0.6,且游客是否游覽哪個景點互不影響,用ξ表示該游客離開該城市時游覽的景點數(shù)與沒有游覽的景點數(shù)之差的絕對值.
(1)求ξ的分布列及期望;
(2)記“f(x)=2ξx+4在[-3,-1]上存在x,使f(x)=0”為事件A,求事件A的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.△ABC的三內(nèi)角A、B、C滿足sin2A+sin2B=2sin2C,那么cosC的最小值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知圓(x-2)2+y2=4的圓心為C,過原點O的直線l與圓交于A,B兩點.若△ABC的面積為1,則滿足條件的直線l有( 。
A.2條B.4條C.8條D.無數(shù)條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)D,E,F(xiàn)分別為△PQR三邊QR,RP,PQ的中點,則$\overrightarrow{EQ}+\overrightarrow{FR}$=( 。
A.$\overrightarrow{QR}$B.$\overrightarrow{PD}$C.$\frac{1}{2}\overrightarrow{QR}$D.$\frac{1}{2}\overrightarrow{PD}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知定義域為[-1,0)∪(0,1]的奇函數(shù)f(x),當x∈(0,1]時,f(x)=$\sqrt{1-{x}^{2}}$,則不等式f(x)<f(-x)+x的解集為($\frac{\sqrt{3}}{2}$,1]∪[-1,-$\frac{\sqrt{3}}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)拋物線y=$\frac{1}{2}$x2的焦點為F,準線為l,過點F作一直線與拋物線交于A,B兩點,再分別過點A,B作拋物線的切線,這兩條切線的交點記為P.
(1)證明:直線PA與PB相互垂直,且點P在準線l上;
(2)是否存在常數(shù)λ,使等式$\overrightarrow{FA}$•$\overrightarrow{FB}$=λ$\overrightarrow{FP}$2恒成立?若存在,求出λ的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知正方體ABCD-A1B1C1D1的棱長為1,E是棱D1C1的中點,點F在正方體內(nèi)部或正方體的表面上,若EF∥平面A1BC1,則動點F的軌跡所形成的區(qū)域面積是( 。
A.$\frac{9}{8}$B.$\frac{\sqrt{3}}{2}$C.$\frac{3\sqrt{3}}{4}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若半徑為2 的球O中有一內(nèi)接圓柱,當圓柱的側(cè)面積為8π時,圓柱的體積為4$\sqrt{2}π$.

查看答案和解析>>

同步練習(xí)冊答案